Selected Papers of the Conference "Logic in Computer Science (LICS) 2010"


Editor: Anca Muscholl, Martín Escardó, Jean-Pierre Jouannaud

1. An extension of data automata that captures XPath

Mikołaj Bojańczyk ; Sławomir Lasota.
We define a new kind of automata recognizing properties of data words or data trees and prove that the automata capture all queries definable in Regular XPath. We show that the automata-theoretic approach may be applied to answer decidability and expressibility questions for XPath.

2. Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem

Libor Barto ; Marcin Kozik.
The Algebraic Dichotomy Conjecture states that the Constraint Satisfaction Problem over a fixed template is solvable in polynomial time if the algebra of polymorphisms associated to the template lies in a Taylor variety, and is NP-complete otherwise. This paper provides two new characterizations of finitely generated Taylor varieties. The first characterization is using absorbing subalgebras and the second one cyclic terms. These new conditions allow us to reprove the conjecture of Bang-Jensen and Hell (proved by the authors) and the characterization of locally finite Taylor varieties using weak near-unanimity terms (proved by McKenzie and Maróti) in an elementary and self-contained way.

3. QRB-Domains and the Probabilistic Powerdomain

Jean Goubault-Larrecq.
Is there any Cartesian-closed category of continuous domains that would be closed under Jones and Plotkin's probabilistic powerdomain construction? This is a major open problem in the area of denotational semantics of probabilistic higher-order languages. We relax the question, and look for quasi-continuous dcpos instead. We introduce a natural class of such quasi-continuous dcpos, the omega-QRB-domains. We show that they form a category omega-QRB with pleasing properties: omega-QRB is closed under the probabilistic powerdomain functor, under finite products, under taking bilimits of expanding sequences, under retracts, and even under so-called quasi-retracts. But... omega-QRB is not Cartesian closed. We conclude by showing that the QRB domains are just one half of an FS-domain, merely lacking control.

4. On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction

Barnaby Martin ; Manuel Bodirsky ; Martin Hils.
The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).

5. Querying the Guarded Fragment

Vince Bárány ; Georg Gottlob ; Martin Otto.
Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.

6. Discriminating Lambda-Terms Using Clocked Boehm Trees

Joerg Endrullis ; Dimitri Hendriks ; Jan Willem Klop ; Andrew Polonsky.
As observed by Intrigila, there are hardly techniques available in the lambda-calculus to prove that two lambda-terms are not beta-convertible. Techniques employing the usual Boehm Trees are inadequate when we deal with terms having the same Boehm Tree (BT). This is the case in particular for fixed point combinators, as they all have the same BT. Another interesting equation, whose consideration was suggested by Scott, is BY = BYS, an equation valid in the classical model P-omega of lambda-calculus, and hence valid with respect to BT-equality but nevertheless the terms are beta-inconvertible. To prove such beta-inconvertibilities, we employ `clocked' BT's, with annotations that convey information of the tempo in which the data in the BT are produced. Boehm Trees are thus enriched with an intrinsic clock behaviour, leading to a refined discrimination method for lambda-terms. The corresponding equality is strictly intermediate between beta-convertibility and Boehm Tree equality, the equality in the model P-omega. An analogous approach pertains to Levy-Longo and Berarducci Trees. Our refined Boehm Trees find in particular an application in beta-discriminating fixed point combinators (fpc's). It turns out that Scott's equation BY = BYS is the key to unlocking a plethora of fpc's, generated by a variety of production schemes of which the simplest was found by Boehm, stating that new fpc's are obtained by postfixing the term SI, also known as Smullyan's Owl. We prove that all […]

7. On the strictness of the quantifier structure hierarchy in first-order logic

Yuguo He.
We study a natural hierarchy in first-order logic, namely the quantifier structure hierarchy, which gives a systematic classification of first-order formulas based on structural quantifier resource. We define a variant of Ehrenfeucht-Fraisse games that characterizes quantifier classes and use it to prove that this hierarchy is strict over finite structures, using strategy compositions. Moreover, we prove that this hierarchy is strict even over ordered finite structures, which is interesting in the context of descriptive complexity.