Selected Papers of the Conference ''Tools and Algorithms for the Construction and Analysis of Systems'' (TACAS 2013)

1. Weighted Pushdown Systems with Indexed Weight Domains

Yasuhiko Minamide.
The reachability analysis of weighted pushdown systems is a very powerful technique in verification and analysis of recursive programs. Each transition rule of a weighted pushdown system is associated with an element of a bounded semiring representing the weight of the rule. However, we have realized that the restriction of the boundedness is too strict and the formulation of weighted pushdown systems is not general enough for some applications. To generalize weighted pushdown systems, we first introduce the notion of stack signatures that summarize the effect of a computation of a pushdown system and formulate pushdown systems as automata over the monoid of stack signatures. We then generalize weighted pushdown systems by introducing semirings indexed by the monoid and weaken the boundedness to local boundedness.

2. Encoding Monomorphic and Polymorphic Types

Jasmin Christian Blanchette ; Sascha Böhme ; Andrei Popescu ; Nicholas Smallbone.
Many automatic theorem provers are restricted to untyped logics, and existing translations from typed logics are bulky or unsound. Recent research proposes monotonicity as a means to remove some clutter when translating monomorphic to untyped first-order logic. Here we pursue this approach systematically, analysing formally a variety of encodings that further improve on efficiency while retaining soundness and completeness. We extend the approach to rank-1 polymorphism and present alternative schemes that lighten the translation of polymorphic symbols based on the novel notion of "cover". The new encodings are implemented in Isabelle/HOL as part of the Sledgehammer tool. We include informal proofs of soundness and correctness, and have formalised the monomorphic part of this work in Isabelle/HOL. Our evaluation finds the new encodings vastly superior to previous schemes.

3. On-the-Fly Computation of Bisimilarity Distances

Giorgio Bacci ; Giovanni Bacci ; Kim G. Larsen ; Radu Mardare.
We propose a distance between continuous-time Markov chains (CTMCs) and study the problem of computing it by comparing three different algorithmic methodologies: iterative, linear program, and on-the-fly. In a work presented at FoSSaCS'12, Chen et al. characterized the bisimilarity distance of Desharnais et al. between discrete-time Markov chains as an optimal solution of a linear program that can be solved by using the ellipsoid method. Inspired by their result, we propose a novel linear program characterization to compute the distance in the continuous-time setting. Differently from previous proposals, ours has a number of constraints that is bounded by a polynomial in the size of the CTMC. This, in particular, proves that the distance we propose can be computed in polynomial time. Despite its theoretical importance, the proposed linear program characterization turns out to be inefficient in practice. Nevertheless, driven by the encouraging results of our previous work presented at TACAS'13, we propose an efficient on-the-fly algorithm, which, unlike the other mentioned solutions, computes the distances between two given states avoiding an exhaustive exploration of the state space. This technique works by successively refining over-approximations of the target distances using a greedy strategy, which ensures that the state space is further explored only when the current approximations are improved. Tests performed on a consistent set of (pseudo)randomly generated CTMCs show […]

4. Deriving Probability Density Functions from Probabilistic Functional Programs

Sooraj Bhat ; Johannes Borgström ; Andrew D. Gordon ; Claudio Russo.
The probability density function of a probability distribution is a fundamental concept in probability theory and a key ingredient in various widely used machine learning methods. However, the necessary framework for compiling probabilistic functional programs to density functions has only recently been developed. In this work, we present a density compiler for a probabilistic language with failure and both discrete and continuous distributions, and provide a proof of its soundness. The compiler greatly reduces the development effort of domain experts, which we demonstrate by solving inference problems from various scientific applications, such as modelling the global carbon cycle, using a standard Markov chain Monte Carlo framework.