Editors: Dan Ghica, Achim Jung

We study modal team logic MTL, the team-semantical extension of modal logic ML closed under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion logic, are well-understood. However, due to the unrestricted Boolean negation, the satisfiability problem of full MTL has been notoriously resistant to a complexity theoretical classification. In our approach, we introduce the notion of canonical models into the team-semantical setting. By construction of such a model, we reduce the satisfiability problem of MTL to simple model checking. Afterwards, we show that this approach is optimal in the sense that MTL-formulas can efficiently enforce canonicity. Furthermore, to capture these results in terms of complexity, we introduce a non-elementary complexity class, TOWER(poly), and prove that it contains satisfiability and validity of MTL as complete problems. We also prove that the fragments of MTL with bounded modal depth are complete for the levels of the elementary hierarchy (with polynomially many alternations). The respective hardness results hold for both strict or lax semantics of the modal operators and the splitting disjunction, and also over the class of reflexive and transitive frames.

Quantitative extensions of parity games have recently attracted significant interest. These extensions include parity games with energy and payoff conditions as well as finitary parity games and their generalization to parity games with costs. Finitary parity games enjoy a special status among these extensions, as they offer a native combination of the qualitative and quantitative aspects in infinite games: The quantitative aspect of finitary parity games is a quality measure for the qualitative aspect, as it measures the limit superior of the time it takes to answer an odd color by a larger even one. Finitary parity games have been extended to parity games with costs, where each transition is labeled with a nonnegative weight that reflects the costs incurred by taking it. We lift this restriction and consider parity games with costs with arbitrary integer weights. We show that solving such games is in NP $\cap$ coNP, the signature complexity for games of this type. We also show that the protagonist has finite-state winning strategies, and provide tight pseudo-polynomial bounds for the memory he needs to win the game. Naturally, the antagonist may need infinite memory to win. Moreover, we present tight bounds on the quality of winning strategies for the protagonist. Furthermore, we investigate the problem of determining, for a given threshold $b$, whether the protagonist has a strategy of quality at most $b$ and show this problem to be EXPTIME-complete. The protagonist […]

We demonstrate that the most well-known approach to rewriting graphical structures, the Double-Pushout (DPO) approach, possesses a notion of sequential compositions of rules along an overlap that is associative in a natural sense. Notably, our results hold in the general setting of $\mathcal{M}$-adhesive categories. This observation complements the classical Concurrency Theorem of DPO rewriting. We then proceed to define rule algebras in both settings, where the most general categories permissible are the finitary (or finitary restrictions of) $\mathcal{M}$-adhesive categories with $\mathcal{M}$-effective unions. If in addition a given such category possess an $\mathcal{M}$-initial object, the resulting rule algebra is unital (in addition to being associative). We demonstrate that in this setting a canonical representation of the rule algebras is obtainable, which opens the possibility of applying the concept to define and compute the evolution of statistical moments of observables in stochastic DPO rewriting systems.

We study two extensions of FO2[<], first-order logic interpreted in finite words, in which formulas are restricted to use only two variables. We adjoin to this language two-variable atomic formulas that say, "the letter $a$ appears between positions $x$ and $y$" and "the factor $u$ appears between positions $x$ and $y$". These are, in a sense, the simplest properties that are not expressible using only two variables. We present several logics, both first-order and temporal, that have the same expressive power, and find matching lower and upper bounds for the complexity of satisfiability for each of these formulations. We give effective conditions, in terms of the syntactic monoid of a regular language, for a property to be expressible in these logics. This algebraic analysis allows us to prove, among other things, that our new logics have strictly less expressive power than full first-order logic FO[<]. Our proofs required the development of novel techniques concerning factorizations of words.

We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come […]