2019

We consider the problem of evaluating in streaming (i.e., in a single left-to-right pass) a nested word transduction with a limited amount of memory. A transduction T is said to be height bounded memory (HBM) if it can be evaluated with a memory that depends only on the size of T and on the height of the input word. We show that it is decidable in coNPTime for a nested word transduction defined by a visibly pushdown transducer (VPT), if it is HBM. In this case, the required amount of memory may depend exponentially on the height of the word. We exhibit a sufficient, decidable condition for a VPT to be evaluated with a memory that depends quadratically on the height of the word. This condition defines a class of transductions that strictly contains all determinizable VPTs.

We study modal team logic MTL, the team-semantical extension of modal logic ML closed under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion logic, are well-understood. However, due to the unrestricted Boolean negation, the satisfiability problem of full MTL has been notoriously resistant to a complexity theoretical classification. In our approach, we introduce the notion of canonical models into the team-semantical setting. By construction of such a model, we reduce the satisfiability problem of MTL to simple model checking. Afterwards, we show that this approach is optimal in the sense that MTL-formulas can efficiently enforce canonicity. Furthermore, to capture these results in terms of complexity, we introduce a non-elementary complexity class, TOWER(poly), and prove that it contains satisfiability and validity of MTL as complete problems. We also prove that the fragments of MTL with bounded modal depth are complete for the levels of […]

We broadly generalise Mermin-type arguments on GHZ states, and we provide exact group-theoretic conditions for non-locality to be achieved. Our results are of interest in quantum foundations, where they yield a new hierarchy of quantum-realisable All-vs-Nothing arguments. They are also of interest to quantum protocols, where they find immediate application to a non-trivial extension of the hybrid quantum-classical secret sharing scheme of Hillery, Bu\v{z}ek and Berthiaume (HBB). Our proofs are carried out in the graphical language of string diagrams for dagger compact categories, and their validity extends beyond quantum theory to any theory featuring the relevant algebraic structures.

The computational properties of modal and propositional dependence logics have been extensively studied over the past few years, starting from a result by Sevenster showing NEXPTIME-completeness of the satisfiability problem for modal dependence logic. Thus far, however, the validity and entailment properties of these logics have remained mostly unaddressed. This paper provides a comprehensive classification of the complexity of validity and entailment in various modal and propositional dependence logics. The logics examined are obtained by extending the standard modal and propositional logics with notions of dependence, independence, and inclusion in the team semantics context. In particular, we address the question of the complexity of validity in modal dependence logic. By showing that it is NEXPTIME-complete we refute an earlier conjecture proposing a higher complexity for the problem.

This paper presents a language-independent proof system for reachability properties of programs written in non-deterministic (e.g., concurrent) languages, referred to as all-path reachability logic. It derives partial-correctness properties with all-path semantics (a state satisfying a given precondition reaches states satisfying a given postcondition on all terminating execution paths). The proof system takes as axioms any unconditional operational semantics, and is sound (partially correct) and (relatively) complete, independent of the object language. The soundness has also been mechanized in Coq. This approach is implemented in a tool for semantics-based verification as part of the K framework (http://kframework.org)

The height of a piecewise-testable language $L$ is the maximum length of the words needed to define $L$ by excluding and requiring given subwords. The height of $L$ is an important descriptive complexity measure that has not yet been investigated in a systematic way. This article develops a series of new techniques for bounding the height of finite languages and of languages obtained by taking closures by subwords, superwords and related operations. As an application of these results, we show that $\mathsf{FO}^2(A^*,\sqsubseteq)$, the two-variable fragment of the first-order logic of sequences with the subword ordering, can only express piecewise-testable properties and has elementary complexity.

We introduce the notion of feedback computable functions from $2^\omega$ to $2^\omega$, extending feedback Turing computation in analogy with the standard notion of computability for functions from $2^\omega$ to $2^\omega$. We then show that the feedback computable functions are precisely the effectively Borel functions. With this as motivation we define the notion of a feedback computable function on a structure, independent of any coding of the structure as a real. We show that this notion is absolute, and as an example characterize those functions that are computable from a Gandy ordinal with some finite subset distinguished.

Theories for reasoning about programs with effects initially focused on basic manipulation of lists and other mutable data. The next challenge was to consider higher-order programming, adding functions as first class objects to mutable data. Reasoning about actors added the challenge of dealing with distributed open systems of entities interacting asynchronously. The advent of cyber-physical agents introduces the need to consider uncertainty, faults, physical as well as logical effects. In addition cyber-physical agents have sensors and actuators giving rise to a much richer class of effects with broader scope: think of self-driving cars, autonomous drones, or smart medical devices. This paper gives a retrospective on reasoning about effects highlighting key principles and techniques and closing with challenges for future work.

We prove that the Büchi topology and the automatic topology are Polish. We also show that this cannot be fully extended to the case of a space of infinite labelled binary trees; in particular the Büchi and the Muller topologies are not Polish in this case.

The SPARC TSO weak memory model is defined axiomatically, with a non-compositional formulation that makes modular reasoning about programs difficult. Our denotational approach uses pomsets to provide a compositional semantics capturing exactly the behaviours permitted by SPARC TSO. It uses buffered states and an inductive definition of execution to assign an input-output meaning to pomsets. We show that our denotational account is sound and complete relative to the axiomatic account, that is, that it captures exactly the behaviours permitted by the axiomatic account. Our compositional approach facilitates the study of SPARC TSO and supports modular analysis of program behaviour.

For every class $\mathscr{C}$ of word languages, one may associate a decision problem called $\mathscr{C}$-separation. Given two regular languages, it asks whether there exists a third language in $\mathscr{C}$ containing the first language, while being disjoint from the second one. Usually, finding an algorithm deciding $\mathscr{C}$-separation yields a deep insight on $\mathscr{C}$. We consider classes defined by fragments of first-order logic. Given such a fragment, one may often build a larger class by adding more predicates to its signature. In the paper, we investigate the operation of enriching signatures with modular predicates. Our main theorem is a generic transfer result for this construction. Informally, we show that when a logical fragment is equipped with a signature containing the successor predicate, separation for the stronger logic enriched with modular predicates reduces to separation for the original logic. This result actually applies to a more general decision […]

In the setting of DynFO, dynamic programs update the stored result of a query whenever the underlying data changes. This update is expressed in terms of first-order logic. We introduce a strategy for constructing dynamic programs that utilises periodic computation of auxiliary data from scratch and the ability to maintain a query for a limited number of change steps. We show that if some program can maintain a query for log n change steps after an AC$^1$-computable initialisation, it can be maintained by a first-order dynamic program as well, i.e., in DynFO. As an application, it is shown that decision and optimisation problems defined by monadic second-order (MSO) formulas are in DynFO, if only change sequences that produce graphs of bounded treewidth are allowed. To establish this result, a Feferman-Vaught-type composition theorem for MSO is established that might be useful in its own right.

It is known that Metric Temporal Logic (MTL) is strictly less expressive than the Monadic First-Order Logic of Order and Metric (FO[<, +1]) when interpreted over timed words; this remains true even when the time domain is bounded a priori. In this work, we present an extension of MTL with the same expressive power as FO[<, +1] over bounded timed words (and also, trivially, over time-bounded signals). We then show that expressive completeness also holds in the general (time-unbounded) case if we allow the use of rational constants $q \in \mathbb{Q}$ in formulas. This extended version of MTL therefore yields a definitive real-time analogue of Kamp's theorem. As an application, we propose a trace-length independent monitoring procedure for our extension of MTL, the first such procedure in a dense real-time setting.

We first show that in the function realizability topos every metric space is separable, and every object with decidable equality is countable. More generally, working with synthetic topology, every $T_0$-space is separable and every discrete space is countable. It follows that intuitionistic logic does not show the existence of a non-separable metric space, or an uncountable set with decidable equality, even if we assume principles that are validated by function realizability, such as Dependent and Function choice, Markov's principle, and Brouwer's continuity and fan principles.

We study rewritability of monadic disjunctive Datalog programs, (the complements of) MMSNP sentences, and ontology-mediated queries (OMQs) based on expressive description logics of the ALC family and on conjunctive queries. We show that rewritability into FO and into monadic Datalog (MDLog) are decidable, and that rewritability into Datalog is decidable when the original query satisfies a certain condition related to equality. We establish 2NExpTime-completeness for all studied problems except rewritability into MDLog for which there remains a gap between 2NExpTime and 3ExpTime. We also analyze the shape of rewritings, which in the MMSNP case correspond to obstructions, and give a new construction of canonical Datalog programs that is more elementary than existing ones and also applies to formulas with free variables.

We study the strength of axioms needed to prove various results related to automata on infinite words and Büchi's theorem on the decidability of the MSO theory of $(N, {\le})$. We prove that the following are equivalent over the weak second-order arithmetic theory $RCA_0$: (1) the induction scheme for $\Sigma^0_2$ formulae of arithmetic, (2) a variant of Ramsey's Theorem for pairs restricted to so-called additive colourings, (3) Büchi's complementation theorem for nondeterministic automata on infinite words, (4) the decidability of the depth-$n$ fragment of the MSO theory of $(N, {\le})$, for each $n \ge 5$. Moreover, each of (1)-(4) implies McNaughton's determinisation theorem for automata on infinite words, as well as the "bounded-width" version of König's Lemma, often used in proofs of McNaughton's theorem.

We develop a $^*$-continuous Kleene $\omega$-algebra of real-time energy functions. Together with corresponding automata, these can be used to model systems which can consume and regain energy (or other types of resources) depending on available time. Using recent results on $^*$-continuous Kleene $\omega$-algebras and computability of certain manipulations on real-time energy functions, it follows that reachability and Büchi acceptance in real-time energy automata can be decided in a static way which only involves manipulations of real-time energy functions.

We present a comprehensive study of the behavioral theory of an untyped $\lambda$-calculus extended with the delimited-control operators shift and reset. To that end, we define a contextual equivalence for this calculus, that we then aim to characterize with coinductively defined relations, called bisimilarities. We consider different styles of bisimilarities (namely applicative, normal-form, and environmental) within a unifying framework, and we give several examples to illustrate their respective strengths and weaknesses. We also discuss how to extend this work to other delimited-control operators.

We show that on graphs with n vertices, the 2-dimensional Weisfeiler-Leman algorithm requires at most O(n^2/log(n)) iterations to reach stabilization. This in particular shows that the previously best, trivial upper bound of O(n^2) is asymptotically not tight. In the logic setting, this translates to the statement that if two graphs of size n can be distinguished by a formula in first-order logic with counting with 3 variables (i.e., in C3), then they can also be distinguished by a C3-formula that has quantifier depth at most O(n^2/log(n)). To prove the result we define a game between two players that enables us to decouple the causal dependencies between the processes happening simultaneously over several iterations of the algorithm. This allows us to treat large color classes and small color classes separately. As part of our proof we show that for graphs with bounded color class size, the number of iterations until stabilization is at most linear in the number of vertices. This […]

The regular separability problem asks, for two given languages, if there exists a regular language including one of them but disjoint from the other. Our main result is decidability, and PSpace-completeness, of the regular separability problem for languages of one counter automata without zero tests (also known as one counter nets). This contrasts with undecidability of the regularity problem for one counter nets, and with undecidability of the regular separability problem for one counter automata, which is our second result.

Hyland's effective topos offers an important realizability model for constructive mathematics in the form of a category whose internal logic validates Church's Thesis. It also contains a boolean full sub-quasitopos of "assemblies" where only a restricted form of Church's Thesis survives. In the present paper we compare the effective topos and the quasitopos of assemblies each as the elementary quotient completions of a Lawvere doctrine based on the partitioned assemblies. In that way we can explain why the two forms of Church's Thesis each category satisfies differ by the way each is inherited from specific properties of the doctrine which determines the elementary quotient completion.