Selected Papers of the 31st International Conference on Concurrency Theory (CONCUR 2020)

Editors: Igor Konnov and Laura Kovacs

1. Games Where You Can Play Optimally with Arena-Independent Finite Memory

Patricia Bouyer ; Stéphane Le Roux ; Youssouf Oualhadj ; Mickael Randour ; Pierre Vandenhove.
For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in a game against its antagonistic environment. Depending on the specification, optimal strategies might be simple or quite complex, for example having to use (possibly infinite) memory. Hence, research strives to understand which settings allow for simple strategies. In 2005, Gimbert and Zielonka provided a complete characterization of preference relations (a formal framework to model specifications and game objectives) that admit memoryless optimal strategies for both players. In the last fifteen years however, practical applications have driven the community toward games with complex or multiple objectives, where memory -- finite or infinite -- is almost always required. Despite much effort, the exact frontiers of the class of preference relations that admit finite-memory optimal strategies still elude us. In this work, we establish a complete characterization of preference relations that admit optimal strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical interest: if both players have optimal (arena-independent-)finite-memory […]

2. On the Axiomatisability of Parallel Composition

Luca Aceto ; Valentina Castiglioni ; Anna Ingolfsdottir ; Bas Luttik ; Mathias R. Pedersen.
This paper studies the existence of finite equational axiomatisations of the interleaving parallel composition operator modulo the behavioural equivalences in van Glabbeek's linear time-branching time spectrum. In the setting of the process algebra BCCSP over a finite set of actions, we provide finite, ground-complete axiomatisations for various simulation and (decorated) trace semantics. We also show that no congruence over BCCSP that includes bisimilarity and is included in possible futures equivalence has a finite, ground-complete axiomatisation; this negative result applies to all the nested trace and nested simulation semantics.

3. Bounded Reachability Problems are Decidable in FIFO Machines

Benedikt Bollig ; Alain Finkel ; Amrita Suresh.
The undecidability of basic decision problems for general FIFO machines such as reachability and unboundedness is well-known. In this paper, we provide an underapproximation for the general model by considering only runs that are input-bounded (i.e. the sequence of messages sent through a particular channel belongs to a given bounded language). We prove, by reducing this model to a counter machine with restricted zero tests, that the rational-reachability problem (and by extension, control-state reachability, unboundedness, deadlock, etc.) is decidable. This class of machines subsumes input-letter-bounded machines, flat machines, linear FIFO nets, and monogeneous machines, for which some of these problems were already shown to be decidable. These theoretical results can form the foundations to build a tool to verify general FIFO machines based on the analysis of input-bounded machines.

4. Residuality and Learning for Nondeterministic Nominal Automata

Joshua Moerman ; Matteo Sammartino.
We are motivated by the following question: which data languages admit an active learning algorithm? This question was left open in previous work by the authors, and is particularly challenging for languages recognised by nondeterministic automata. To answer it, we develop the theory of residual nominal automata, a subclass of nondeterministic nominal automata. We prove that this class has canonical representatives, which can always be constructed via a finite number of observations. This property enables active learning algorithms, and makes up for the fact that residuality -- a semantic property -- is undecidable for nominal automata. Our construction for canonical residual automata is based on a machine-independent characterisation of residual languages, for which we develop new results in nominal lattice theory. Studying residuality in the context of nominal languages is a step towards a better understanding of learnability of automata with some sort of nondeterminism.

5. A Scalable Algorithm for Decentralized Actor Termination Detection

Dan Plyukhin ; Gul Agha.
Automatic garbage collection (GC) prevents certain kinds of bugs and reduces programming overhead. GC techniques for sequential programs are based on reachability analysis. However, testing reachability from a root set is inadequate for determining whether an actor is garbage: Observe that an unreachable actor may send a message to a reachable actor. Instead, it is sufficient to check termination (sometimes also called quiescence): an actor is terminated if it is not currently processing a message and cannot receive a message in the future. Moreover, many actor frameworks provide all actors with access to file I/O or external storage; without inspecting an actor's internal code, it is necessary to check that the actor has terminated to ensure that it may be garbage collected in these frameworks. Previous algorithms to detect actor garbage require coordination mechanisms such as causal message delivery or nonlocal monitoring of actors for mutation. Such coordination mechanisms adversely affect concurrency and are therefore expensive in distributed systems. We present a low-overhead deferred reference listing technique (called DRL) for termination detection in actor systems. DRL is based on asynchronous local snapshots and message-passing between actors. This enables a decentralized implementation and transient network partition tolerance. The paper provides a formal description of DRL, shows that all actors identified as garbage have indeed terminated (safety), and that […]

6. The Big-O Problem

Dmitry Chistikov ; Stefan Kiefer ; Andrzej S. Murawski ; David Purser.
Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second. We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable. Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel's conjecture, when the language is bounded (i.e., a subset of $w_1^*\dots w_m^*$ for some finite words $w_1,\dots,w_m$) or when the automaton has finite ambiguity. On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to $\varepsilon$-differential privacy, for which the optimal constant of the big-O notation is exactly $\exp(\varepsilon)$.

7. Determinisability of register and timed automata

Lorenzo Clemente ; Sławomir Lasota ; Radosław Piórkowski.
The deterministic membership problem for timed automata asks whether the timed language given by a nondeterministic timed automaton can be recognised by a deterministic timed automaton. An analogous problem can be stated in the setting of register automata. We draw the complete decidability/complexity landscape of the deterministic membership problem, in the setting of both register and timed automata. For register automata, we prove that the deterministic membership problem is decidable when the input automaton is a nondeterministic one-register automaton (possibly with epsilon transitions) and the number of registers of the output deterministic register automaton is fixed. This is optimal: We show that in all the other cases the problem is undecidable, i.e., when either (1) the input nondeterministic automaton has two registers or more (even without epsilon transitions), or (2) it uses guessing, or (3) the number of registers of the output deterministic automaton is not fixed. The landscape for timed automata follows a similar pattern. We show that the problem is decidable when the input automaton is a one-clock nondeterministic timed automaton without epsilon transitions and the number of clocks of the output deterministic timed automaton is fixed. Again, this is optimal: We show that the problem in all the other cases is undecidable, i.e., when either (1) the input nondeterministic timed automaton has two clocks or more, or (2) it uses epsilon transitions, or (3) the […]

8. Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions

Paul Wild ; Lutz Schröder.
In systems involving quantitative data, such as probabilistic, fuzzy, or metric systems, behavioural distances provide a more fine-grained comparison of states than two-valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued case, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous to classical simulations and bisimulations, which need not be preorders or equivalence relations, respectively. The known generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a […]

9. Asynchronous wreath product and cascade decompositions for concurrent behaviours

Bharat Adsul ; Paul Gastin ; Saptarshi Sarkar ; Pascal Weil.
We develop new algebraic tools to reason about concurrent behaviours modelled as languages of Mazurkiewicz traces and asynchronous automata. These tools reflect the distributed nature of traces and the underlying causality and concurrency between events, and can be said to support true concurrency. They generalize the tools that have been so efficient in understanding, classifying and reasoning about word languages. In particular, we introduce an asynchronous version of the wreath product operation and we describe the trace languages recognized by such products (the so-called asynchronous wreath product principle). We then propose a decomposition result for recognizable trace languages, analogous to the Krohn-Rhodes theorem, and we prove this decomposition result in the special case of acyclic architectures. Finally, we introduce and analyze two distributed automata-theoretic operations. One, the local cascade product, is a direct implementation of the asynchronous wreath product operation. The other, global cascade sequences, although conceptually and operationally similar to the local cascade product, translates to a more complex asynchronous implementation which uses the gossip automaton of Mukund and Sohoni. This leads to interesting applications to the characterization of trace languages definable in first-order logic: they are accepted by a restricted local cascade product of the gossip automaton and 2-state asynchronous reset automata, and also by a global cascade […]

10. Synthesis of Computable Regular Functions of Infinite Words

V. Dave ; E. Filiot ; S. Krishna ; N. Lhote.
Regular functions from infinite words to infinite words can be equivalently specified by MSO-transducers, streaming $\omega$-string transducers as well as deterministic two-way transducers with look-ahead. In their one-way restriction, the latter transducers define the class of rational functions. Even though regular functions are robustly characterised by several finite-state devices, even the subclass of rational functions may contain functions which are not computable (by a Turing machine with infinite input). This paper proposes a decision procedure for the following synthesis problem: given a regular function $f$ (equivalently specified by one of the aforementioned transducer model), is $f$ computable and if it is, synthesize a Turing machine computing it. For regular functions, we show that computability is equivalent to continuity, and therefore the problem boils down to deciding continuity. We establish a generic characterisation of continuity for functions preserving regular languages under inverse image (such as regular functions). We exploit this characterisation to show the decidability of continuity (and hence computability) of rational and regular functions. For rational functions, we show that this can be done in $\mathsf{NLogSpace}$ (it was already known to be in $\mathsf{PTime}$ by Prieur). In a similar fashion, we also effectively characterise uniform continuity of regular functions, and relate it to the notion of uniform computability, which offers […]