Selected Papers of the 25th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2022)

Editors: Patricia Bouyer and Lutz Schroeder


1. Separators in Continuous Petri Nets

Michael Blondin ; Javier Esparza.
Leroux has proved that unreachability in Petri nets can be witnessed by a Presburger separator, i.e. if a marking $\vec{m}_\text{src}$ cannot reach a marking $\vec{m}_\text{tgt}$, then there is a formula $\varphi$ of Presburger arithmetic such that: $\varphi(\vec{m}_\text{src})$ holds; $\varphi$ is forward invariant, i.e., $\varphi(\vec{m})$ and $\vec{m} \rightarrow \vec{m}'$ imply $\varphi(\vec{m}'$); and $\neg \varphi(\vec{m}_\text{tgt})$ holds. While these separators could be used as explanations and as formal certificates of unreachability, this has not yet been the case due to their worst-case size, which is at least Ackermannian, and the complexity of checking that a formula is a separator, which is at least exponential (in the formula size). We show that, in continuous Petri nets, these two problems can be overcome. We introduce locally closed separators, and prove that: (a) unreachability can be witnessed by a locally closed separator computable in polynomial time; (b) checking whether a formula is a locally closed separator is in NC (so, simpler than unreachability, which is P-complete). We further consider the more general problem of (existential) set-to-set reachability, where two sets of markings are given as convex polytopes. We show that, while our approach does not extend directly, we can efficiently certify unreachability via an altered Petri net.

2. Model Checking Temporal Properties of Recursive Probabilistic Programs

Tobias Winkler ; Christina Gehnen ; Joost-Pieter Katoen.
Probabilistic pushdown automata (pPDA) are a standard operational model for programming languages involving discrete random choices and recursive procedures. Temporal properties are useful for specifying the chronological order of events during program execution. Existing approaches for model checking pPDA against temporal properties have focused mostly on $\omega$-regular and LTL properties. In this paper, we give decidability and complexity results for the model checking problem of pPDA against $\omega$-visibly pushdown languages that can be described by specification logics such as CaRet. These logical formulae allow specifying properties that explicitly take the structured computations arising from procedural programs into account. For example, CaRet is able to match procedure calls with their corresponding future returns, and thus allows to express fundamental program properties such as total and partial correctness.

3. Variable binding and substitution for (nameless) dummies

André Hirschowitz ; Tom Hirschowitz ; Ambroise Lafont ; Marco Maggesi.
By abstracting over well-known properties of De Bruijn's representation with nameless dummies, we design a new theory of syntax with variable binding and capture-avoiding substitution. We propose it as a simpler alternative to Fiore, Plotkin, and Turi's approach, with which we establish a strong formal link. We also show that our theory easily incorporates simple types and equations between terms.

4. Categorical composable cryptography: extended version

Anne Broadbent ; Martti Karvonen.
We formalize the simulation paradigm of cryptography in terms of category theory and show that protocols secure against abstract attacks form a symmetric monoidal category, thus giving an abstract model of composable security definitions in cryptography. Our model is able to incorporate computational security, set-up assumptions and various attack models such as colluding or independently acting subsets of adversaries in a modular, flexible fashion. We conclude by using string diagrams to rederive the security of the one-time pad, correctness of Diffie-Hellman key exchange and no-go results concerning the limits of bipartite and tripartite cryptography, ruling out e.g., composable commitments and broadcasting. On the way, we exhibit two categorical constructions of resource theories that might be of independent interest: one capturing resources shared among multiple parties and one capturing resource conversions that succeed asymptotically. This is a corrected version of the paper arXiv:2208.13232 published originally on December 18, 2023.

5. Foundations of probability-raising causality in Markov decision processes

Christel Baier ; Jakob Piribauer ; Robin Ziemek.
This work introduces a novel cause-effect relation in Markov decision processes using the probability-raising principle. Initially, sets of states as causes and effects are considered, which is subsequently extended to regular path properties as effects and then as causes. The paper lays the mathematical foundations and analyzes the algorithmic properties of these cause-effect relations. This includes algorithms for checking cause conditions given an effect and deciding the existence of probability-raising causes. As the definition allows for sub-optimal coverage properties, quality measures for causes inspired by concepts of statistical analysis are studied. These include recall, coverage ratio and f-score. The computational complexity for finding optimal causes with respect to these measures is analyzed.

6. A first-order logic characterization of safety and co-safety languages

Alessandro Cimatti ; Luca Geatti ; Nicola Gigante ; Angelo Montanari ; Stefano Tonetta.
Linear Temporal Logic (LTL) is one of the most popular temporal logics, that comes into play in a variety of branches of computer science. Among the various reasons of its widespread use there are its strong foundational properties: LTL is equivalent to counter-free omega-automata, to star-free omega-regular expressions, and (by Kamp's theorem) to the First-Order Theory of Linear Orders (FO-TLO). Safety and co-safety languages, where a finite prefix suffices to establish whether a word does not belong or belongs to the language, respectively, play a crucial role in lowering the complexity of problems like model checking and reactive synthesis for LTL. SafetyLTL (resp., coSafetyLTL) is a fragment of LTL where only universal (resp., existential) temporal modalities are allowed, that recognises safety (resp., co-safety) languages only. The main contribution of this paper is the introduction of a fragment of FO-TLO, called SafetyFO, and of its dual coSafetyFO, which are expressively complete with respect to the LTL-definable safety and co-safety languages. We prove that they exactly characterize SafetyLTL and coSafetyLTL, respectively, a result that joins Kamp's theorem, and provides a clearer view of the characterization of (fragments of) LTL in terms of first-order languages. In addition, it gives a direct, compact, and self-contained proof that any safety language definable in LTL is definable in SafetyLTL as well. As a by-product, we obtain some interesting results […]

7. Token Games and History-Deterministic Quantitative-Automata

Udi Boker ; Karoliina Lehtinen.
A nondeterministic automaton is history-deterministic if its nondeterminism can be resolved by only considering the prefix of the word read so far. Due to their good compositional properties, history-deterministic automata are useful in solving games and synthesis problems. Deciding whether a given nondeterministic automaton is history-deterministic (the HDness problem) is generally a difficult task, which can involve an exponential procedure, or even be undecidable, as is the case for example with pushdown automata. Token games provide a PTime solution to the HDness problem of Büchi and coBüchi automata, and it is conjectured that 2-token games characterise HDness for all $\omega$-regular automata. We extend token games to the quantitative setting and analyse their potential to help deciding HDness of quantitative automata. In particular, we show that 1-token games characterise HDness for all quantitative (and Boolean) automata on finite words, as well as discounted-sum (DSum), Inf and Reachability automata on infinite words, and that 2-token games characterise HDness of LimInf and LimSup automata, as well as Sup automata on infinite words. Using these characterisations, we provide solutions to the HDness problem of Safety, Reachability, Inf and Sup automata on finite and infinite words in PTime, of DSum automata on finite and infinite words in NP$\cap$co-NP, of LimSup automata in quasipolynomial time, and of LimInf automata in exponential time, where the latter two are […]

8. Complete and tractable machine-independent characterizations of second-order polytime

Emmanuel Hainry ; Bruce M. Kapron ; Jean-Yves Marion ; Romain Péchoux.
The class of Basic Feasible Functionals BFF is the second-order counterpart of the class of first-order functions computable in polynomial time. We present several implicit characterizations of BFF based on a typed programming language of terms. These terms may perform calls to non-recursive imperative procedures. The type discipline has two layers: the terms follow a standard simply-typed discipline and the procedures follow a standard tier-based type discipline. BFF consists exactly of the second-order functionals that are computed by typable and terminating programs. The completeness of this characterization surprisingly still holds in the absence of lambda-abstraction. Moreover, the termination requirement can be specified as a completeness-preserving instance, which can be decided in time quadratic in the size of the program. As typing is decidable in polynomial time, we obtain the first tractable (i.e., decidable in polynomial time), sound, complete, and implicit characterization of BFF, thus solving a problem opened for more than 20 years.