Selected Papers of the 7th International Conference on Formal Structures and Deduction (FSCD 2022)

Editors: Amy Felty and Georg Moser


1. Galois connecting call-by-value and call-by-name

Dylan McDermott ; Alan Mycroft.
We establish a general framework for reasoning about the relationship between call-by-value and call-by-name. In languages with computational effects, call-by-value and call-by-name executions of programs often have different, but related, observable behaviours. For example, if a program might diverge but otherwise has no effects, then whenever it terminates under call-by-value, it terminates with the same result under call-by-name. We propose a technique for stating and proving properties like these. The key ingredient is Levy's call-by-push-value calculus, which we use as a framework for reasoning about evaluation orders. We show that the call-by-value and call-by-name translations of expressions into call-by-push-value have related observable behaviour under certain conditions on computational effects, which we identify. We then use this fact to construct maps between the call-by-value and call-by-name interpretations of types, and identify further properties of effects that imply these maps form a Galois connection. These properties hold for some computational effects (such as divergence), but not others (such as mutable state). This gives rise to a general reasoning principle that relates call-by-value and call-by-name. We apply the reasoning principle to example computational effects including divergence and nondeterminism.

2. A Fibrational Tale of Operational Logical Relations: Pure, Effectful and Differential

Francesco Dagnino ; Francesco Gavazzo.
Logical relations built on top of an operational semantics are one of the most successful proof methods in programming language semantics. In recent years, more and more expressive notions of operationally-based logical relations have been designed and applied to specific families of languages. However, a unifying abstract framework for operationally-based logical relations is still missing. We show how fibrations can provide a uniform treatment of operational logical relations, using as reference example a lambda-calculus with generic effects endowed with a novel, abstract operational semantics defined on a large class of categories. Moreover, this abstract perspective allows us to give a solid mathematical ground also to differential logical relations -- a recently introduced notion of higher-order distance between programs -- both pure and effectful, bringing them back to a common picture with traditional ones.

3. An Analysis of Tennenbaum's Theorem in Constructive Type Theory

Marc Hermes ; Dominik Kirst.
Tennenbaum's theorem states that the only countable model of Peano arithmetic (PA) with computable arithmetical operations is the standard model of natural numbers. In this paper, we use constructive type theory as a framework to revisit, analyze and generalize this result. The chosen framework allows for a synthetic approach to computability theory, exploiting that, externally, all functions definable in constructive type theory can be shown computable. We then build on this viewpoint, and furthermore internalize it by assuming a version of Church's thesis, which expresses that any function on natural numbers is representable by a formula in PA. This assumption provides for a conveniently abstract setup to carry out rigorous computability arguments, even in the theorem's mechanization. Concretely, we constructivize several classical proofs and present one inherently constructive rendering of Tennenbaum's theorem, all following arguments from the literature. Concerning the classical proofs in particular, the constructive setting allows us to highlight differences in their assumptions and conclusions which are not visible classically. All versions are accompanied by a unified mechanization in the Coq proof assistant.

4. Compositional Confluence Criteria

Kiraku Shintani ; Nao Hirokawa.
We show how confluence criteria based on decreasing diagrams are generalized to ones composable with other criteria. For demonstration of the method, the confluence criteria of orthogonality, rule labeling, and critical pair systems for term rewriting are recast into composable forms. We also show how such a criterion can be used for a reduction method that removes rewrite rules unnecessary for confluence analysis. In addition to them, we prove that Toyama's parallel closedness result based on parallel critical pairs subsumes his almost parallel closedness theorem.

5. Stabilized profunctors and stable species of structures

Marcelo Fiore ; Zeinab Galal ; Hugo Paquet.
We introduce a bicategorical model of linear logic which is a novel variation of the bicategory of groupoids, profunctors, and natural transformations. Our model is obtained by endowing groupoids with additional structure, called a kit, to stabilize the profunctors by controlling the freeness of the groupoid action on profunctor elements. The theory of generalized species of structures, based on profunctors, is refined to a new theory of \emph{stable species} of structures between groupoids with Boolean kits. Generalized species are in correspondence with analytic functors between presheaf categories; in our refined model, stable species are shown to be in correspondence with restrictions of analytic functors, which we characterize as being stable, to full subcategories of stabilized presheaves. Our motivating example is the class of finitary polynomial functors between categories of indexed sets, also known as normal functors, that arises from kits enforcing free actions. We show that the bicategory of groupoids with Boolean kits, stable species, and natural transformations is cartesian closed. This makes essential use of the logical structure of Boolean kits and explains the well-known failure of cartesian closure for the bicategory of finitary polynomial functors between categories of set-indexed families and cartesian natural transformations. The paper additionally develops the model of classical linear logic underlying the cartesian closed structure and clarifies the […]

6. Addition and Differentiation of ZX-diagrams

Emmanuel Jeandel ; Simon Perdrix ; Margarita Veshchezerova.
The ZX-calculus is a powerful framework for reasoning in quantum computing. It provides in particular a compact representation of matrices of interests. A peculiar property of the ZX-calculus is the absence of a formal sum allowing the linear combinations of arbitrary ZX-diagrams. The universality of the formalism guarantees however that for any two ZX-diagrams, the sum of their interpretations can be represented by a ZX-diagram. We introduce a general, inductive definition of the addition of ZX-diagrams, relying on the construction of controlled diagrams. Based on this addition technique, we provide an inductive differentiation of ZX-diagrams. Indeed, given a ZX-diagram with variables in the description of its angles, one can differentiate the diagram according to one of these variables. Differentiation is ubiquitous in quantum mechanics and quantum computing (e.g. for solving optimization problems). Technically, differentiation of ZX-diagrams is strongly related to summation as witnessed by the product rules. We also introduce an alternative, non inductive, differentiation technique rather based on the isolation of the variables. Finally, we apply our results to deduce a diagram for an Ising Hamiltonian.