In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation of stream processors $A^\mathbb{N} \to B^\mathbb{N}$ drawing on ideas of Brouwerian constructivism. Their stream processors have an intensional character; in this paper, we give a corresponding coalgebraic characterisation of extensional stream processors, i.e., the set of continuous functions $A^\mathbb{N} \to B^\mathbb{N}$. Our account sites both our result and that of op. cit. within the apparatus of comodels for algebraic effects originating with Power-Shkaravska. Within this apparatus, the distinction between intensional and extensional equivalence for stream processors arises in the same way as the the distinction between bisimulation and trace equivalence for labelled transition systems and probabilistic generative systems.