We generalize several propositional preprocessing techniques to higher-order logic, building on existing first-order generalizations. These techniques eliminate literals, clauses, or predicate symbols from the problem, with the aim of making it more amenable to automatic proof search. We also introduce a new technique, which we call quasipure literal elimination, that strictly subsumes pure literal elimination. The new techniques are implemented in the Zipperposition theorem prover. Our evaluation shows that they sometimes help prove problems originating from Isabelle formalizations and the TPTP library.