Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond. In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn's result from Kripke frames to coalgebras for weak-pullback preserving functors. To facilitate this analysis we prove a number of category theoretic results on functors on the categories $\mathsf{Set}$ of sets and $\mathsf{Pos}$ of posets: Every functor $\mathsf{Set} \to \mathsf{Pos}$ has a $\mathsf{Pos}$-enriched left Kan extension $\mathsf{Pos} \to \mathsf{Pos}$. Functors arising in this way are said to have a presentation in discrete arities. In the case that $\mathsf{Set} \to \mathsf{Pos}$ is actually $\mathsf{Set}$-valued, we call the corresponding left Kan extension $\mathsf{Pos} \to \mathsf{Pos}$ its posetification. A $\mathsf{Set}$-functor preserves weak pullbacks if and only if its posetification preserves exact squares. A $\mathsf{Pos}$-functor with a presentation in discrete arities preserves surjections. The inclusion $\mathsf{Set} \to \mathsf{Pos}$ is dense. A functor $\mathsf{Pos} \to \mathsf{Pos}$ has a presentation in discrete arities if and only if it preserves coinserters of `truncated nerves of posets'. A functor $\mathsf{Pos} \to \mathsf{Pos}$ is a posetification if and only if it preserves coinserters of truncated nerves of posets and discrete posets. A locally monotone endofunctor of an ordered variety has a presentation by monotone operations and equations if and only if it preserves $\mathsf{Pos}$-enriched sifted colimits.

Source : oai:arXiv.org:1402.5922

DOI : 10.2168/LMCS-11(3:18)2015

Volume: Volume 11, Issue 3

Published on: September 22, 2015

Submitted on: February 23, 2014

Keywords: Mathematics - Category Theory,Computer Science - Logic in Computer Science

This page has been seen 83 times.

This article's PDF has been downloaded 43 times.