Regular tree languages in low levels of the Wadge HierarchyArticle
Authors: Mikołaj Bojańczyk ; Filippo Cavallari ; Thomas Place ; Michał Skrzypczak
NULL##NULL##NULL##NULL
Mikołaj Bojańczyk;Filippo Cavallari;Thomas Place;Michał Skrzypczak
In this article we provide effective characterisations of regular languages
of infinite trees that belong to the low levels of the Wadge hierarchy. More
precisely we prove decidability for each of the finite levels of the hierarchy;
for the class of the Boolean combinations of open sets $BC(\Sigma_1^0)$ (i.e.
the union of the first $\omega$ levels); and for the Borel class $\Delta_2^0$
(i.e. for the union of the first $\omega_1$ levels).