Conradie, Willem and Palmigiano, Alessandra - Constructive Canonicity of Inductive Inequalities

lmcs:4531 - Logical Methods in Computer Science, August 5, 2020, Volume 16, Issue 3 -
Constructive Canonicity of Inductive Inequalities

Authors: Conradie, Willem and Palmigiano, Alessandra

We prove the canonicity of inductive inequalities in a constructive meta-theory, for classes of logics algebraically captured by varieties of normal and regular lattice expansions. This result encompasses Ghilardi-Meloni's and Suzuki's constructive canonicity results for Sahlqvist formulas and inequalities, and is based on an application of the tools of unified correspondence theory. Specifically, we provide an alternative interpretation of the language of the algorithm ALBA for lattice expansions: nominal and conominal variables are respectively interpreted as closed and open elements of canonical extensions of normal/regular lattice expansions, rather than as completely join-irreducible and meet-irreducible elements of perfect normal/regular lattice expansions. We show the correctness of ALBA with respect to this interpretation. From this fact, the constructive canonicity of the inequalities on which ALBA succeeds follows by an adaptation of the standard argument. The claimed result then follows as a consequence of the success of ALBA on inductive inequalities.

Volume: Volume 16, Issue 3
Published on: August 5, 2020
Submitted on: May 23, 2018
Keywords: Mathematics - Logic,03B45


Consultation statistics

This page has been seen 160 times.
This article's PDF has been downloaded 101 times.