Thosten Altenkirch ; James Chapman ; Tarmo Uustalu - Monads need not be endofunctors

lmcs:928 - Logical Methods in Computer Science, March 6, 2015, Volume 11, Issue 1 - https://doi.org/10.2168/LMCS-11(1:3)2015
Monads need not be endofunctorsArticle

Authors: Thosten Altenkirch ; James Chapman ORCID; Tarmo Uustalu ORCID

    We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between relative monads and monads. Arrows are also an instance of relative monads.


    Volume: Volume 11, Issue 1
    Published on: March 6, 2015
    Imported on: May 4, 2011
    Keywords: Computer Science - Programming Languages,Computer Science - Logic in Computer Science,Mathematics - Category Theory

    29 Documents citing this article

    Consultation statistics

    This page has been seen 2650 times.
    This article's PDF has been downloaded 801 times.