Towards a Proof Theory of Gödel Modal LogicsArticle
Authors: George Metcalfe ; Nicola Olivetti
0000-0001-7610-404X##NULL
George Metcalfe;Nicola Olivetti
Analytic proof calculi are introduced for box and diamond fragments of basic
modal fuzzy logics that combine the Kripke semantics of modal logic K with the
many-valued semantics of Gödel logic. The calculi are used to establish
completeness and complexity results for these fragments.
Marta Bílková;Sabine Frittella;Daniil Kozhemiachenko, Lecture notes in computer science, Non-standard Modalities in Paraconsistent Gödel Logic, pp. 420-436, 2023, 10.1007/978-3-031-43619-2_29.
Petr Cintula;Paula Menchón;Carles Noguera, 2018, Toward a general frame semantics for modal many-valued logics, Soft Computing, 23, 7, pp. 2233-2241, 10.1007/s00500-018-3369-5.
Marco Cerami;Francesc Esteva;Àngel García-Cerdaña, 2017, On the relationship between fuzzy description logics and many-valued modal logics, International Journal of Approximate Reasoning, 93, pp. 372-394, 10.1016/j.ijar.2017.11.006.
Tuan-Fang Fan, 2015, Fuzzy Bisimulation for Gödel Modal Logic, IEEE Transactions on Fuzzy Systems, 23, 6, pp. 2387-2396, 10.1109/tfuzz.2015.2426724.
Agata Ciabattoni;Revantha Ramanayake;Heinrich Wansing, 2014, Hypersequent and Display Calculi – a Unified Perspective, Studia Logica, 102, 6, pp. 1245-1294, 10.1007/s11225-014-9566-z.