Home

Simply typed convertibility is TOWER-complete even for safe lambda-terms


We consider the following decision problem: given two simply typed $\lambda$-terms, are they $\beta$-convertible? Equivalently, do they have the same normal form? It is famously non-elementary, but the precise complexity - namely TOWER-complete - is lesser known. One goal of this short paper is to popularize this fact. Our original contribution is to show that the problem stays TOWER-complete when the two input terms belong to Blum and Ong's safe $\lambda$-calculus, a fragment of the simply typed $\lambda$-calculus arising from the study of higher-order recursion schemes. Previously, the best known lower bound for this safe $\beta$-convertibility problem was PSPACE-hardness. Our proof proceeds by reduction from the star-free expression equivalence problem, taking inspiration from the author's work with Pradic on "implicit automata in typed $\lambda$-calculi". These results also hold for $\beta\eta$-convertibility.


Published on September 5, 2024
Preservation theorems for Tarski's relation algebra


We investigate a number of semantically defined fragments of Tarski's algebra of binary relations, including the function-preserving fragment. We address the question whether they are generated by a finite set of operations. We obtain several positive and negative results along these lines. Specifically, the homomorphism-safe fragment is finitely generated (both over finite and over arbitrary structures). The function-preserving fragment is not finitely generated (and, in fact, not expressible by any finite set of guarded second-order definable function-preserving operations). Similarly, the total-function-preserving fragment is not finitely generated (and, in fact, not expressible by any finite set of guarded second-order definable total-function-preserving operations). In contrast, the forward-looking function-preserving fragment is finitely generated by composition, intersection, antidomain, and preferential union. Similarly, the forward-and-backward-looking injective-function-preserving fragment is finitely generated by composition, intersection, antidomain, inverse, and an `injective union' operation.


Published on September 4, 2024
Half-Positional Objectives Recognized by Deterministic B\"uchi Automata


In two-player games on graphs, the simplest possible strategies are those that can be implemented without any memory. These are called positional strategies. In this paper, we characterize objectives recognizable by deterministic B\"uchi automata (a subclass of omega-regular objectives) that are half-positional, that is, for which the protagonist can always play optimally using positional strategies (both over finite and infinite graphs). Our characterization consists of three natural conditions linked to the language-theoretic notion of right congruence. Furthermore, this characterization yields a polynomial-time algorithm to decide half-positionality of an objective recognized by a given deterministic B\"uchi automaton.


Published on August 29, 2024
Zeta Functions and the (Linear) Logic of Markov Processes
Authors: Thomas Seiller.


The author introduced models of linear logic known as ''Interaction Graphs'' which generalise Girard's various geometry of interaction constructions. In this work, we establish how these models essentially rely on a deep connection between zeta functions and the execution of programs, expressed as a cocycle. This is first shown in the simple case of graphs, before begin lifted to dynamical systems. Focussing on probabilistic models, we then explain how the notion of graphings used in Interaction Graphs captures a natural class of sub-Markov processes. We then extend the realisability constructions and the notion of zeta function to provide a realisability model of second-order linear logic over the set of all (discrete-time) sub-Markov processes.


Published on August 29, 2024
Controller Synthesis for Timeline-based Games


In the timeline-based approach to planning, the evolution over time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional timeline-based planning systems excel at the integration of planning with execution by handling temporal uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based games has been recently introduced. It has been proved that finding whether a winning strategy exists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers implementing such strategies is missing. This paper fills this gap, by providing an effective and computationally optimal approach to controller synthesis for timeline-based games.


Published on August 27, 2024

Managing Editors

 

Stefan Milius
Editor-in-Chief

Brigitte Pientka
Fabio Zanasi
Executive Editors


Editorial Board
Executive Board
Publisher

eISSN: 1860-5974


Logical Methods in Computer Science is an open-access journal, covered by SCOPUS, DBLPWeb of Science, Mathematical Reviews and Zentralblatt. The journal is a member of the Free Journal Network. All journal content is licensed under a Creative Commons license.