2007
Model checking properties are often described by means of finite automata. Any particular such automaton divides the set of infinite trees into finitely many classes, according to which state has an infinite run. Building the full type hierarchy upon this interpretation of the base type gives a finite semantics for simply-typed lambda-trees. A calculus based on this semantics is proven sound and complete. In particular, for regular infinite lambda-trees it is decidable whether a given automaton has a run or not. As regular lambda-trees are precisely recursion schemes, this decidability result holds for arbitrary recursion schemes of arbitrary level, without any syntactical restriction.
Two styles of definitions are usually considered to express that a security protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s should never be disclosed while equivalence-based secrecy states that two executions of a protocol with distinct instances for s should be indistinguishable to an attacker. Although the second formulation ensures a higher level of security and is closer to cryptographic notions of secrecy, decidability results and automatic tools have mainly focused on the first definition so far. This paper initiates a systematic investigation of the situations where syntactic secrecy entails strong secrecy. We show that in the passive case, reachability-based secrecy actually implies equivalence-based secrecy for digital signatures, symmetric and asymmetric encryption provided that the primitives are probabilistic. For active adversaries, we provide sufficient (and rather tight) conditions on the protocol for this implication to hold.
The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.
We study observation-based strategies for two-player turn-based games on graphs with omega-regular objectives. An observation-based strategy relies on imperfect information about the history of a play, namely, on the past sequence of observations. Such games occur in the synthesis of a controller that does not see the private state of the plant. Our main results are twofold. First, we give a fixed-point algorithm for computing the set of states from which a player can win with a deterministic observation-based strategy for any omega-regular objective. The fixed point is computed in the lattice of antichains of state sets. This algorithm has the advantages of being directed by the objective and of avoiding an explicit subset construction on the game graph. Second, we give an algorithm for computing the set of states from which a player can win with probability 1 with a randomized observation-based strategy for a Buechi objective. This set is of interest because in the absence of perfect information, randomized strategies are more powerful than deterministic ones. We show that our algorithms are optimal by proving matching lower bounds.
In this paper we revisit Safra's determinization constructions for automata on infinite words. We show how to construct deterministic automata with fewer states and, most importantly, parity acceptance conditions. Determinization is used in numerous applications, such as reasoning about tree automata, satisfiability of CTL*, and realizability and synthesis of logical specifications. The upper bounds for all these applications are reduced by using the smaller deterministic automata produced by our construction. In addition, the parity acceptance conditions allows to use more efficient algorithms (when compared to handling Rabin or Streett acceptance conditions).
We propose a set theory strong enough to interpret powerful type theories underlying proof assistants such as LEGO and also possibly Coq, which at the same time enables program extraction from its constructive proofs. For this purpose, we axiomatize an impredicative constructive version of Zermelo-Fraenkel set theory IZF with Replacement and $\omega$-many inaccessibles, which we call \izfio. Our axiomatization utilizes set terms, an inductive definition of inaccessible sets and the mutually recursive nature of equality and membership relations. It allows us to define a weakly-normalizing typed lambda calculus corresponding to proofs in \izfio according to the Curry-Howard isomorphism principle. We use realizability to prove the normalization theorem, which provides a basis for program extraction capability.
A construction of fully abstract typed models for PCF and PCF^+ (i.e., PCF + "parallel conditional function"), respectively, is presented. It is based on general notions of sequential computational strategies and wittingly consistent non-deterministic strategies introduced by the author in the seventies. Although these notions of strategies are old, the definition of the fully abstract models is new, in that it is given level-by-level in the finite type hierarchy. To prove full abstraction and non-dcpo domain theoretic properties of these models, a theory of computational strategies is developed. This is also an alternative and, in a sense, an analogue to the later game strategy semantics approaches of Abramsky, Jagadeesan, and Malacaria; Hyland and Ong; and Nickau. In both cases of PCF and PCF^+ there are definable universal (surjective) functionals from numerical functions to any given type, respectively, which also makes each of these models unique up to isomorphism. Although such models are non-omega-complete and therefore not continuous in the traditional terminology, they are also proved to be sequentially complete (a weakened form of omega-completeness), "naturally" continuous (with respect to existing directed "pointwise", or "natural" lubs) and also "naturally" omega-algebraic and "naturally" bounded complete -- appropriate generalisation of the ordinary notions of domain theory to the case of non-dcpos.