Selected Papers of "International Joint Conference on Automated Reasoning 2006"

2006 Editor: Shankar Natarajan

1. Canonical calculi with (n,k)-ary quantifiers

Arnon Avron ; Anna Zamansky.
Propositional canonical Gentzen-type systems, introduced in 2001 by Avron and Lev, are systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a connective is introduced and no other connective is mentioned. A constructive coherence criterion for the non-triviality of such systems was defined and it was shown that a system of this kind admits cut-elimination iff it is coherent. The semantics of such systems is provided using two-valued non-deterministic matrices (2Nmatrices). In 2005 Zamansky and Avron extended these results to systems with unary quantifiers of a very restricted form. In this paper we substantially extend the characterization of canonical systems to (n,k)-ary quantifiers, which bind k distinct variables and connect n formulas, and show that the coherence criterion remains constructive for such systems. Then we focus on the case of k∈{0,1} and for a canonical calculus G show that it is coherent precisely when it has a strongly characteristic 2Nmatrix, which in turn is equivalent to admitting strong cut-elimination.

2. Extracting Programs from Constructive HOL Proofs via IZF Set-Theoretic Semantics

Robert Constable ; Wojciech Moczydlowski.
Church's Higher Order Logic is a basis for influential proof assistants -- HOL and PVS. Church's logic has a simple set-theoretic semantics, making it trustworthy and extensible. We factor HOL into a constructive core plus axioms of excluded middle and choice. We similarly factor standard set theory, ZFC, into a constructive core, IZF, and axioms of excluded middle and choice. Then we provide the standard set-theoretic semantics in such a way that the constructive core of HOL is mapped into IZF. We use the disjunction, numerical existence and term existence properties of IZF to provide a program extraction capability from proofs in the constructive core. We can implement the disjunction and numerical existence properties in two different ways: one using Rathjen's realizability for IZF and the other using a new direct weak normalization result for IZF by Moczydlowski. The latter can also be used for the term existence property.

3. Consistency and Completeness of Rewriting in the Calculus of Constructions

Daria Walukiewicz-Chrzaszcz ; Jacek Chrzaszcz.
Adding rewriting to a proof assistant based on the Curry-Howard isomorphism, such as Coq, may greatly improve usability of the tool. Unfortunately adding an arbitrary set of rewrite rules may render the underlying formal system undecidable and inconsistent. While ways to ensure termination and confluence, and hence decidability of type-checking, have already been studied to some extent, logical consistency has got little attention so far. In this paper we show that consistency is a consequence of canonicity, which in turn follows from the assumption that all functions defined by rewrite rules are complete. We provide a sound and terminating, but necessarily incomplete algorithm to verify this property. The algorithm accepts all definitions that follow dependent pattern matching schemes presented by Coquand and studied by McBride in his PhD thesis. It also accepts many definitions by rewriting, containing rules which depart from standard pattern matching.

4. On the strength of proof-irrelevant type theories

Benjamin Werner.
We present a type theory with some proof-irrelevance built into the conversion rule. We argue that this feature is useful when type theory is used as the logical formalism underlying a theorem prover. We also show a close relation with the subset types of the theory of PVS. We show that in these theories, because of the additional extentionality, the axiom of choice implies the decidability of equality, that is, almost classical logic. Finally we describe a simple set-theoretic semantics.

5. Interpolation in local theory extensions

Viorica Sofronie-Stokkermans.
In this paper we study interpolation in local extensions of a base theory. We identify situations in which it is possible to obtain interpolants in a hierarchical manner, by using a prover and a procedure for generating interpolants in the base theory as black-boxes. We present several examples of theory extensions in which interpolants can be computed this way, and discuss applications in verification, knowledge representation, and modular reasoning in combinations of local theories.

6. Cut-Simulation and Impredicativity

Christoph Benzmueller ; Chad E. Brown ; Michael Kohlhase.
We investigate cut-elimination and cut-simulation in impredicative (higher-order) logics. We illustrate that adding simple axioms such as Leibniz equations to a calculus for an impredicative logic -- in our case a sequent calculus for classical type theory -- is like adding cut. The phenomenon equally applies to prominent axioms like Boolean- and functional extensionality, induction, choice, and description. This calls for the development of calculi where these principles are built-in instead of being treated axiomatically.