2020

Corrado Böhm once observed that if $Y$ is any fixed point combinator (fpc), then $Y(\lambda yx.x(yx))$ is again fpc. He thus discovered the first "fpc generating scheme" -- a generic way to build new fpcs from old. Continuing this idea, define an $\textit{fpc generator}$ to be any sequence of terms $G_1,\dots,G_n$ such that \[ Y \in FPC \Rightarrow Y G_1 \cdots G_n \in FPC \] In this contribution, we take first steps in studying the structure of (weak) fpc generators. We isolate several robust classes of such generators, by examining their elementary properties like injectivity and (weak) constancy. We provide sufficient conditions for existence of fixed points of a given generator $(G_1,\cdots,G_n)$: an fpc $Y$ such that $Y = Y G_1 \cdots G_n$. We conjecture that weak constancy is a necessary condition for existence of such (higher-order) fixed points. This statement generalizes Statman's conjecture on non-existence of "double fpcs": fixed points of the generator $(G) = (\lambda yx.x(yx))$ discovered by Böhm. Finally, we define and make a few observations about the monoid of (weak) fpc generators. This enables us to formulate new a conjecture about their structure.

The call-by-value lambda calculus can be endowed with permutation rules, arising from linear logic proof-nets, having the advantage of unblocking some redexes that otherwise get stuck during the reduction. We show that such an extension allows to define a satisfying notion of Böhm(-like) tree and a theory of program approximation in the call-by-value setting. We prove that all lambda terms having the same Böhm tree are observationally equivalent, and characterize those Böhm-like trees arising as actual Böhm trees of lambda terms. We also compare this approach with Ehrhard's theory of program approximation based on the Taylor expansion of lambda terms, translating each lambda term into a possibly infinite set of so-called resource terms. We provide sufficient and necessary conditions for a set of resource terms in order to be the Taylor expansion of a lambda term. Finally, we show that the normal form of the Taylor expansion of a lambda term can be computed by performing a normalized Taylor expansion of its Böhm tree. From this it follows that two lambda terms have the same Böhm tree if and only if the normal forms of their Taylor expansions coincide.

This paper proves the approximate intermediate value theorem, constructively and from notably weak hypotheses: from pointwise rather than uniform continuity, without assuming that reals are presented with rational approximants, and without using countable choice. The theorem is that if a pointwise continuous function has both a negative and a positive value, then it has values arbitrarily close to 0. The proof builds on the usual classical proof by bisection, which repeatedly selects the left or right half of an interval; the algorithm here selects an interval of half the size in a continuous way, interpolating between those two possibilities.

A semantics of concurrent programs can be given using precubical sets, in order to study (higher) commutations between the actions, thus encoding the "geometry" of the space of possible executions of the program. Here, we study the particular case of programs using only mutexes, which are the most widely used synchronization primitive. We show that in this case, the resulting programs have non-positive curvature, a notion that we introduce and study here for precubical sets, and can be thought of as an algebraic analogue of the well-known one for metric spaces. Using this it, as well as categorical rewriting techniques, we are then able to show that directed and non-directed homotopy coincide for directed paths in these precubical sets. Finally, we study the geometric realization of precubical sets in metric spaces, to show that our conditions on precubical sets actually coincide with those for metric spaces. Since the category of metric spaces is not cocomplete, we are lead to work with generalized metric spaces and study some of their properties.

We develop a novel method to analyze the dynamics of stochastic rewriting systems evolving over finitary adhesive, extensive categories. Our formalism is based on the so-called rule algebra framework and exhibits an intimate relationship between the combinatorics of the rewriting rules (as encoded in the rule algebra) and the dynamics which these rules generate on observables (as encoded in the stochastic mechanics formalism). We introduce the concept of combinatorial conversion, whereby under certain technical conditions the evolution equation for (the exponential generating function of) the statistical moments of observables can be expressed as the action of certain differential operators on formal power series. This permits us to formulate the novel concept of moment-bisimulation, whereby two dynamical systems are compared in terms of their evolution of sets of observables that are in bijection. In particular, we exhibit non-trivial examples of graphical rewriting systems that are moment-bisimilar to certain discrete rewriting systems (such as branching processes or the larger class of stochastic chemical reaction systems). Our results point towards applications of a vast number of existing well-established exact and approximate analysis techniques developed for chemical reaction systems to the far richer class of general stochastic rewriting systems.

We demonstrate that the most well-known approach to rewriting graphical structures, the Double-Pushout (DPO) approach, possesses a notion of sequential compositions of rules along an overlap that is associative in a natural sense. Notably, our results hold in the general setting of $\mathcal{M}$-adhesive categories. This observation complements the classical Concurrency Theorem of DPO rewriting. We then proceed to define rule algebras in both settings, where the most general categories permissible are the finitary (or finitary restrictions of) $\mathcal{M}$-adhesive categories with $\mathcal{M}$-effective unions. If in addition a given such category possess an $\mathcal{M}$-initial object, the resulting rule algebra is unital (in addition to being associative). We demonstrate that in this setting a canonical representation of the rule algebras is obtainable, which opens the possibility of applying the concept to define and compute the evolution of statistical moments of observables in stochastic DPO rewriting systems.

We introduce two-player games which build words over infinite alphabets, and we study the problem of checking the existence of winning strategies. These games are played by two players, who take turns in choosing valuations for variables ranging over an infinite data domain, thus generating multi-attributed data words. The winner of the game is specified by formulas in the Logic of Repeating Values, which can reason about repetitions of data values in infinite data words. We prove that it is undecidable to check if one of the players has a winning strategy, even in very restrictive settings. However, we prove that if one of the players is restricted to choose valuations ranging over the Boolean domain, the games are effectively equivalent to single-sided games on vector addition systems with states (in which one of the players can change control states but cannot change counter values), known to be decidable and effectively equivalent to energy games. Previous works have shown that the satisfiability problem for various variants of the logic of repeating values is equivalent to the reachability and coverability problems in vector addition systems. Our results raise this connection to the level of games, augmenting further the associations between logics on data words and counter systems.

We prove the canonicity of inductive inequalities in a constructive meta-theory, for classes of logics algebraically captured by varieties of normal and regular lattice expansions. This result encompasses Ghilardi-Meloni's and Suzuki's constructive canonicity results for Sahlqvist formulas and inequalities, and is based on an application of the tools of unified correspondence theory. Specifically, we provide an alternative interpretation of the language of the algorithm ALBA for lattice expansions: nominal and conominal variables are respectively interpreted as closed and open elements of canonical extensions of normal/regular lattice expansions, rather than as completely join-irreducible and meet-irreducible elements of perfect normal/regular lattice expansions. We show the correctness of ALBA with respect to this interpretation. From this fact, the constructive canonicity of the inequalities on which ALBA succeeds follows by an adaptation of the standard argument. The claimed result then follows as a consequence of the success of ALBA on inductive inequalities.