![]() |
![]() |
Editors: Bartek Klin, Sławomir Lasota, Anca Muscholl
In two-player games on graphs, the simplest possible strategies are those that can be implemented without any memory. These are called positional strategies. In this paper, we characterize objectives recognizable by deterministic Büchi automata (a subclass of omega-regular objectives) that are half-positional, that is, for which the protagonist can always play optimally using positional strategies (both over finite and infinite graphs). Our characterization consists of three natural conditions linked to the language-theoretic notion of right congruence. Furthermore, this characterization yields a polynomial-time algorithm to decide half-positionality of an objective recognized by a given deterministic Büchi automaton.
We prove two completeness results for Kleene algebra with tests and a top element, with respect to guarded string languages and binary relations. While the equational theories of those two classes of models coincide over the signature of Kleene algebra, this is no longer the case when we consider an additional constant ``top'' for the full element. Indeed, the full relation satisfies more laws than the full language, and we show that those additional laws can all be derived from a single additional axiom. We recover that the two equational theories coincide if we slightly generalise the notion of relational model, allowing sub-algebras of relations where top is a greatest element but not necessarily the full relation. We use models of closed languages and reductions in order to prove our completeness results, which are relative to any axiomatisation of the algebra of regular events. For one of our constructions, we extend the concept of finite monoid recognisability to guarded-string languages; this device makes it possible to obtain a PSpace algorithm for the equational theory of binary relations.
We explore the notion of history-determinism in the context of timed automata (TA) over infinite timed words. History-deterministic (HD) automata are those in which nondeterminism can be resolved on the fly, based on the run constructed thus far. History-determinism is a robust property that admits different game-based characterisations, and HD specifications allow for game-based verification without an expensive determinization step. We show that the class of timed $\omega$-languages recognized by HD timed automata strictly extends that of deterministic ones, and is strictly included in those recognised by fully non-deterministic TA. For non-deterministic timed automata it is known that universality is already undecidable for safety/reachability TA. For history-deterministic TA with arbitrary parity acceptance, we show that timed universality, inclusion, and synthesis all remain decidable and are EXPTIME-complete. For the subclass of TA with safety or reachability acceptance, one can decide (in EXPTIME) whether such an automaton is history-deterministic. If so, it can effectively determinized without introducing new automaton states.
We prove a Kleene theorem for higher-dimensional automata. It states that the languages they recognise are precisely the rational subsumption-closed sets of finite interval pomsets. The rational operations on these languages include a gluing composition, for which we equip pomsets with interfaces. For our proof, we introduce higher-dimensional automata with interfaces, which are modelled as presheaves over labelled precube categories, and develop tools and techniques inspired by algebraic topology, such as cylinders and (co)fibrations. Higher-dimensional automata form a general model of non-interleaving concurrency, which subsumes many other approaches. Interval orders are used as models for concurrent and distributed systems where events extend in time. Our tools and techniques may therefore yield templates for Kleene theorems in various models and applications.
Regular model checking is a technique for the verification of infinite-state systems whose configurations can be represented as finite words over a suitable alphabet. The form we are studying applies to systems whose set of initial configurations is regular, and whose transition relation is captured by a length-preserving transducer. To verify safety properties, regular model checking iteratively computes automata recognizing increasingly larger regular sets of reachable configurations, and checks if they contain unsafe configurations. Since this procedure often does not terminate, acceleration, abstraction, and widening techniques have been developed to compute a regular superset of the reachable configurations. In this paper, we develop a complementary procedure. Instead of approaching the set of reachable configurations from below, we start with the set of all configurations and approach it from above. We use that the set of reachable configurations is equal to the intersection of all inductive invariants of the system. Since this intersection is non-regular in general, we introduce b-invariants, defined as those representable by CNF-formulas with at most b clauses. We prove that, for every $b\geq0$, the intersection of all inductive b-invariants is regular, and we construct an automaton recognizing it. We show that whether this automaton accepts some unsafe configuration is in EXPSPACE for every $b\geq0$, and PSPACE-complete for b=1. Finally, we study how large must b […]
Weighted Timed Games (WTG for short) are the most widely used model to describe controller synthesis problems involving real-time issues. Unfortunately, they are notoriously difficult, and undecidable in general. As a consequence, one-clock WTGs have attracted a lot of attention, especially because they are known to be decidable when only non-negative weights are allowed. However, when arbitrary weights are considered, despite several recent works, their decidability status was still unknown. In this paper, we solve this problem positively and show that the value function can be computed in exponential time (if weights are encoded in unary).
We consider the problems of language inclusion and language equivalence for Vector Addition Systems with States (VASS) with the acceptance condition defined by the set of accepting states (and more generally by some upward-closed conditions). In general, the problem of language equivalence is undecidable even for one-dimensional VASS, thus to get decidability we investigate restricted subclasses. On the one hand, we show that the problem of language inclusion of a VASS in k-ambiguous VASS (for any natural k) is decidable and even in Ackermann. On the other hand, we prove that the language equivalence problem is already Ackermann-hard for deterministic VASS. These two results imply Ackermann-completeness for language inclusion and equivalence in several possible restrictions. Some of our techniques can be also applied in much broader generality in infinite-state systems, namely for some subclass of well-structured transition systems.