Editor: Dario Della Monica, Pierre Ganty
Angluin's L$^*$ algorithm learns the minimal deterministic finite automaton (DFA) of a regular language using membership and equivalence queries. Its probabilistic approximatively correct (PAC) version substitutes an equivalence query by numerous random membership queries to get a high level confidence to the answer. Thus it can be applied to any kind of device and may be viewed as an algorithm for synthesizing an automaton abstracting the behavior of the device based on observations. Here we are interested on how Angluin's PAC learning algorithm behaves for devices which are obtained from a DFA by introducing some noise. More precisely we study whether Angluin's algorithm reduces the noise and produces a DFA closer to the original one than the noisy device. We propose several ways to introduce the noise: (1) the noisy device inverts the classification of words w.r.t. the DFA with a small probability, (2) the noisy device modifies with a small probability the letters of the word before asking its classification w.r.t. the DFA, (3) the noisy device combines the classification of a word w.r.t. the DFA and its classification w.r.t. a counter automaton, and (4) the noisy DFA is obtained by a random process from two DFA such that the language of the first one is included in the second one. Then when a word is accepted (resp. rejected) by the first (resp. second) one, it is also accepted (resp. rejected) and in the remaining cases, it is accepted with probability […]
We study first-order logic over unordered structures whose elements carry a finite number of data values from an infinite domain. Data values can be compared wrt.\ equality. As the satisfiability problem for this logic is undecidable in general, we introduce a family of local fragments. They restrict quantification to the neighbourhood of a given reference point that is bounded by some radius. Our first main result establishes decidability of the satisfiability problem for the local radius-1 fragment in presence of one "diagonal relation". On the other hand, extending the radius leads to undecidability. In a second part, we provide the precise decidability and complexity landscape of the satisfiability problem for the existential fragments of local logic, which are parameterized by the number of data values carried by each element and the radius of the considered neighbourhoods. Altogether, we draw a landscape of formalisms that are suitable for the specification of systems with data and open up new avenues for future research.
This paper studies the complexity of classical modal logics and of their extension with fixed-point operators, using translations to transfer results across logics. In particular, we show several complexity results for multi-agent logics via translations to and from the $\mu$-calculus and modal logic, which allow us to transfer known upper and lower bounds. We also use these translations to introduce terminating and non-terminating tableau systems for the logics we study, based on Kozen's tableau for the $\mu$-calculus and the one of Fitting and Massacci for modal logic. Finally, we describe these tableaux with $\mu$-calculus formulas, thus reducing the satisfiability of each of these logics to the satisfiability of the $\mu$-calculus, resulting in a general 2EXP upper bound for satisfiability testing.
In the timeline-based approach to planning, the evolution over time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional timeline-based planning systems excel at the integration of planning with execution by handling temporal uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based games has been recently introduced. It has been proved that finding whether a winning strategy exists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers implementing such strategies is missing. This paper fills this gap, by providing an effective and computationally optimal approach to controller synthesis for timeline-based games.
A characteristic sample for a language $L$ and a learning algorithm $\textbf{L}$ is a finite sample of words $T_L$ labeled by their membership in $L$ such that for any sample $T \supseteq T_L$ consistent with $L$, on input $T$ the learning algorithm $\textbf{L}$ returns a hypothesis equivalent to $L$. Which omega automata have characteristic sets of polynomial size, and can these sets be constructed in polynomial time? We address these questions here. In brief, non-deterministic omega automata of any of the common types, in particular Büchi, do not have characteristic samples of polynomial size. For deterministic omega automata that are isomorphic to their right congruence automata, the fully informative languages, polynomial time algorithms for constructing characteristic samples and learning from them are given. The algorithms for constructing characteristic sets in polynomial time for the different omega automata (of types Büchi, coBüchi, parity, Rabin, Street, or Muller), require deterministic polynomial time algorithms for (1) equivalence of the respective omega automata, and (2) testing membership of the language of the automaton in the informative classes, which we provide.