Volume 19, Issue 1

2023


1. Multiparty testing preorders

Rocco de Nicola ; Hernán Melgratti.
Variants of the must testing approach have been successfully applied in service oriented computing for analysing the compliance between (contracts exposed by) clients and servers or, more generally, between two peers. It has however been argued that multiparty scenarios call for more permissive notions of compliance because partners usually do not have full coordination capabilities. We propose two new testing preorders, which are obtained by restricting the set of potential observers. For the first preorder, called uncoordinated, we allow only sets of parallel observers that use different parts of the interface of a given service and have no possibility of intercommunication. For the second preorder, that we call individualistic, we instead rely on parallel observers that perceive as silent all the actions that are not in the interface of interest. We have that the uncoordinated preorder is coarser than the classical must testing preorder and finer than the individualistic one. We also provide a characterisation in terms of decorated traces for both preorders: the uncoordinated preorder is defined in terms of must-sets and Mazurkiewicz traces while the individualistic one is described in terms of classes of filtered traces that only contain designated visible actions and must-sets.

2. Stream processors and comodels

Richard Garner.
In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation of stream processors $A^\mathbb{N} \to B^\mathbb{N}$ drawing on ideas of Brouwerian constructivism. Their stream processors have an intensional character; in this paper, we give a corresponding coalgebraic characterisation of extensional stream processors, i.e., the set of continuous functions $A^\mathbb{N} \to B^\mathbb{N}$. Our account sites both our result and that of op. cit. within the apparatus of comodels for algebraic effects originating with Power-Shkaravska. Within this apparatus, the distinction between intensional and extensional equivalence for stream processors arises in the same way as the the distinction between bisimulation and trace equivalence for labelled transition systems and probabilistic generative systems.

3. Deconfined Global Types for Asynchronous Sessions

Francesco Dagnino ; Paola Giannini ; Mariangiola Dezani-Ciancaglini.
Multiparty sessions with asynchronous communications and global types play an important role for the modelling of interaction protocols in distributed systems. In designing such calculi the aim is to enforce, by typing, good properties for all participants, maximising, at the same time, the accepted behaviours. Our type system improves the state-of-the-art by typing all asynchronous sessions and preserving the key properties of Subject Reduction, Session Fidelity and Progress when some well-formedness conditions are satisfied. The type system comes together with a sound and complete type inference algorithm. The well-formedness conditions are undecidable, but an algorithm checking an expressive restriction of them recovers the effectiveness of typing.

4. Coalgebras for Bisimulation of Weighted Automata over Semirings

Purandar Bhaduri.
Weighted automata are a generalization of nondeterministic automata that associate a weight drawn from a semiring $K$ with every transition and every state. Their behaviours can be formalized either as weighted language equivalence or weighted bisimulation. In this paper we explore the properties of weighted automata in the framework of coalgebras over (i) the category $\mathsf{SMod}$ of semimodules over a semiring $K$ and $K$-linear maps, and (ii) the category $\mathsf{Set}$ of sets and maps. We show that the behavioural equivalences defined by the corresponding final coalgebras in these two cases characterize weighted language equivalence and weighted bisimulation, respectively. These results extend earlier work by Bonchi et al. using the category $\mathsf{Vect}$ of vector spaces and linear maps as the underlying model for weighted automata with weights drawn from a field $K$. The key step in our work is generalizing the notions of linear relation and linear bisimulation of Boreale from vector spaces to semimodules using the concept of the kernel of a $K$-linear map in the sense of universal algebra. We also provide an abstract procedure for forward partition refinement for computing weighted language equivalence. Since for weighted automata defined over semirings the problem is undecidable in general, it is guaranteed to halt only in special cases. We provide sufficient conditions for the termination of our procedure. Although the results are similar to those of Bonchi et […]

5. Survey on Parameterized Verification with Threshold Automata and the Byzantine Model Checker

Igor Konnov ; Marijana Lazić ; Ilina Stoilkovska ; Josef Widder.
Threshold guards are a basic primitive of many fault-tolerant algorithms that solve classical problems in distributed computing, such as reliable broadcast, two-phase commit, and consensus. Moreover, threshold guards can be found in recent blockchain algorithms such as, e.g., Tendermint consensus. In this article, we give an overview of techniques for automated verification of threshold-guarded fault-tolerant distributed algorithms, implemented in the Byzantine Model Checker (ByMC). These threshold-guarded algorithms have the following features: (1) up to $t$ of processes may crash or behave Byzantine; (2) the correct processes count messages and make progress when they receive sufficiently many messages, e.g., at least $t+1$; (3) the number $n$ of processes in the system is a parameter, as well as the number $t$ of faults; and (4) the parameters are restricted by a resilience condition, e.g., $n > 3t$. Traditionally, these algorithms were implemented in distributed systems with up to ten participating processes. Nowadays, they are implemented in distributed systems that involve hundreds or thousands of processes. To make sure that these algorithms are still correct for that scale, it is imperative to verify them for all possible values of the parameters.

6. Computation Against a Neighbour: Addressing Large-Scale Distribution and Adaptivity with Functional Programming and Scala

Giorgio Audrito ; Roberto Casadei ; Ferruccio Damiani ; Mirko Viroli.
Recent works in contexts like the Internet of Things (IoT) and large-scale Cyber-Physical Systems (CPS) propose the idea of programming distributed systems by focussing on their global behaviour across space and time. In this view, a potentially vast and heterogeneous set of devices is considered as an "aggregate" to be programmed as a whole, while abstracting away the details of individual behaviour and exchange of messages, which are expressed declaratively. One such a paradigm, known as aggregate programming, builds on computational models inspired by field-based coordination. Existing models such as the field calculus capture interaction with neighbours by a so-called "neighbouring field" (a map from neighbours to values). This requires ad-hoc mechanisms to smoothly compose with standard values, thus complicating programming and introducing clutter in aggregate programs, libraries and domain-specific languages (DSLs). To address this key issue we introduce the novel notion of "computation against a neighbour", whereby the evaluation of certain subexpressions of the aggregate program are affected by recent corresponding evaluations in neighbours. We capture this notion in the neighbours calculus (NC), a new field calculus variant which is shown to smoothly support declarative specification of interaction with neighbours, and correspondingly facilitate the embedding of field computations as internal DSLs in common general-purpose programming […]

7. Concurrent Process Histories and Resource Transducers

Chad Nester.
We identify the algebraic structure of the material histories generated by concurrent processes. Specifically, we extend existing categorical theories of resource convertibility to capture concurrent interaction. Our formalism admits an intuitive graphical presentation via string diagrams for proarrow equipments. We also consider certain induced categories of resource transducers, which are of independent interest due to their unusual structure.

8. Completeness of Nominal PROPs

Samuel Balco ; Alexander Kurz.
We introduce nominal string diagrams as string diagrams internal in the category of nominal sets. This leads us to define nominal PROPs and nominal monoidal theories. We show that the categories of ordinary PROPs and nominal PROPs are equivalent. This equivalence is then extended to symmetric monoidal theories and nominal monoidal theories, which allows us to transfer completeness results between ordinary and nominal calculi for string diagrams.

9. A proof system for graph (non)-isomorphism verification

Milan Banković ; Ivan Drecun ; Filip Marić.
In order to apply canonical labelling of graphs and isomorphism checking in interactive theorem provers, these checking algorithms must either be mechanically verified or their results must be verifiable by independent checkers. We analyze a state-of-the-art algorithm for canonical labelling of graphs (described by McKay and Piperno) and formulate it in terms of a formal proof system. We provide an implementation that can export a proof that the obtained graph is the canonical form of a given graph. Such proofs are then verified by our independent checker and can be used to confirm that two given graphs are not isomorphic.

10. Learning of Structurally Unambiguous Probabilistic Grammars

Dana Fisman ; Dolav Nitay ; Michal Ziv-Ukelson.
The problem of identifying a probabilistic context free grammar has two aspects: the first is determining the grammar's topology (the rules of the grammar) and the second is estimating probabilistic weights for each rule. Given the hardness results for learning context-free grammars in general, and probabilistic grammars in particular, most of the literature has concentrated on the second problem. In this work we address the first problem. We restrict attention to structurally unambiguous weighted context-free grammars (SUWCFG) and provide a query learning algorithm for \structurally unambiguous probabilistic context-free grammars (SUPCFG). We show that SUWCFG can be represented using \emph{co-linear multiplicity tree automata} (CMTA), and provide a polynomial learning algorithm that learns CMTAs. We show that the learned CMTA can be converted into a probabilistic grammar, thus providing a complete algorithm for learning a structurally unambiguous probabilistic context free grammar (both the grammar topology and the probabilistic weights) using structured membership queries and structured equivalence queries. A summarized version of this work was published at AAAI 21.

11. Countdown games, and simulation on (succinct) one-counter nets

Petr Jancar ; Petr Osicka ; Zdenek Sawa.
We answer an open complexity question by Hofman, Lasota, Mayr, Totzke (LMCS 2016) for simulation preorder on the class of succinct one-counter nets (i.e., one-counter automata with no zero tests where counter increments and decrements are integers written in binary); the problem was known to be PSPACE-hard and in EXPSPACE. We show that all relations between bisimulation equivalence and simulation preorder are EXPSPACE-hard for these nets; simulation preorder is thus EXPSPACE-complete. The result is proven by a reduction from reachability games whose EXPSPACE-completeness in the case of succinct one-counter nets was shown by Hunter (RP 2015), by using other results. We also provide a direct self-contained EXPSPACE-completeness proof for a special case of such reachability games, namely for a modification of countdown games that were shown EXPTIME-complete by Jurdzinski, Sproston, Laroussinie (LMCS 2008); in our modification the initial counter value is not given but is freely chosen by the first player. We also present an alternative proof for the upper bound by Hofman et al. In particular, we give a new simplified proof of the belt theorem that yields a simple graphic presentation of simulation preorder on (non-succinct) one-counter nets and leads to a polynomial-space algorithm (which is trivially extended to an exponential-space algorithm for succinct one-counter nets).

12. A modular construction of type theories

Frédéric Blanqui ; Gilles Dowek ; Emilie Grienenberger ; Gabriel Hondet ; François Thiré.
The lambda-Pi-calculus modulo theory is a logical framework in which many type systems can be expressed as theories. We present such a theory, the theory U, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of U corresponding to each of these systems, and prove that, when a proof in U uses only symbols of a sub-theory, then it is a proof in that sub-theory.

13. A Finite Axiomatisation of Finite-State Automata Using String Diagrams

Robin Piedeleu ; Fabio Zanasi.
We develop a fully diagrammatic approach to finite-state automata, based on reinterpreting their usual state-transition graphical representation as a two-dimensional syntax of string diagrams. In this setting, we are able to provide a complete equational theory for language equivalence, with two notable features. First, the proposed axiomatisation is finite. Second, the Kleene star is a derived concept, as it can be decomposed into more primitive algebraic blocks.

14. Bidirectional Runtime Enforcement of First-Order Branching-Time Properties

Luca Aceto ; Ian Cassar ; Adrian Francalanza ; Anna Ingolfsdottir.
Runtime enforcement is a dynamic analysis technique that instruments a monitor with a system in order to ensure its correctness as specified by some property. This paper explores bidirectional enforcement strategies for properties describing the input and output behaviour of a system. We develop an operational framework for bidirectional enforcement and use it to study the enforceability of the safety fragment of Hennessy-Milner logic with recursion (sHML). We provide an automated synthesis function that generates correct monitors from sHML formulas, and show that this logic is enforceable via a specific type of bidirectional enforcement monitors called action disabling monitors.

15. Pushdown Automata and Context-Free Grammars in Bisimulation Semantics

Jos C. M. Baeten ; Cesare Carissimo ; Bas Luttik.
The Turing machine models an old-fashioned computer, that does not interact with the user or with other computers, and only does batch processing. Therefore, we came up with a Reactive Turing Machine that does not have these shortcomings. In the Reactive Turing Machine, transitions have labels to give a notion of interactivity. In the resulting process graph, we use bisimilarity instead of language equivalence. Subsequently, we considered other classical theorems and notions from automata theory and formal languages theory. In this paper, we consider the classical theorem of the correspondence between pushdown automata and context-free grammars. By changing the process operator of sequential composition to a sequencing operator with intermediate acceptance, we get a better correspondence in our setting. We find that the missing ingredient to recover the full correspondence is the addition of a notion of state awareness.

16. Strategy Complexity of Point Payoff, Mean Payoff and Total Payoff Objectives in Countable MDPs

Richard Mayr ; Eric Munday.
We study countably infinite Markov decision processes (MDPs) with real-valued transition rewards. Every infinite run induces the following sequences of payoffs: 1. Point payoff (the sequence of directly seen transition rewards), 2. Mean payoff (the sequence of the sums of all rewards so far, divided by the number of steps), and 3. Total payoff (the sequence of the sums of all rewards so far). For each payoff type, the objective is to maximize the probability that the $\liminf$ is non-negative. We establish the complete picture of the strategy complexity of these objectives, i.e., how much memory is necessary and sufficient for $\varepsilon$-optimal (resp. optimal) strategies. Some cases can be won with memoryless deterministic strategies, while others require a step counter, a reward counter, or both.

17. A case study on parametric verification of failure detectors

Thanh-Hai Tran ; Igor Konnov ; Josef Widder.
Partial synchrony is a model of computation in many distributed algorithms and modern blockchains. These algorithms are typically parameterized in the number of participants, and their correctness requires the existence of bounds on message delays and on the relative speed of processes after reaching Global Stabilization Time. These characteristics make partially synchronous algorithms parameterized in the number of processes, and parametric in time bounds, which render automated verification of partially synchronous algorithms challenging. In this paper, we present a case study on formal verification of both safety and liveness of the Chandra and Toueg failure detector that is based on partial synchrony. To this end, we first introduce and formalize the class of symmetric point-to-point algorithms that contains the failure detector. Second, we show that these symmetric point-to-point algorithms have a cutoff, and the cutoff results hold in three models of computation: synchrony, asynchrony, and partial synchrony. As a result, one can verify them by model checking small instances, but the verification problem stays parametric in time. Next, we specify the failure detector and the partial synchrony assumptions in three frameworks: TLA+, IVy, and counter automata. Importantly, we tune our modeling to use the strength of each method: (1) We are using counters to encode message buffers with counter automata, (2) we are using first-order relations to encode message buffers in IVy, […]

18. A Formal Model for Polarization under Confirmation Bias in Social Networks

Mário S. Alvim ; Bernardo Amorim ; Sophia Knight ; Santiago Quintero ; Frank Valencia.
We describe a model for polarization in multi-agent systems based on Esteban and Ray's standard family of polarization measures from economics. Agents evolve by updating their beliefs (opinions) based on an underlying influence graph, as in the standard DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of opinions of agents with dissimilar views. We show that even under this bias polarization eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the influence graph is a regular symmetric circulation, we determine the unique belief value to which all agents converge. Our more insightful result establishes that, under some natural assumptions, if polarization does not eventually vanish then either there is a disconnected subgroup of agents, or some agent influences others more than she is influenced. We also prove that polarization does not necessarily vanish in weakly-connected graphs under confirmation bias. Furthermore, we show how our model relates to the classic DeGroot model for social learning. We illustrate our model with several simulations of a running example about polarization over vaccines and of other case studies. The theoretical results and simulations will provide insight into the phenomenon of polarization.

19. Modularity and Combination of Associative Commutative Congruence Closure Algorithms enriched with Semantic Properties

Deepak Kapur.
Algorithms for computing congruence closure of ground equations over uninterpreted symbols and interpreted symbols satisfying associativity and commutativity (AC) properties are proposed. The algorithms are based on a framework for computing a congruence closure by abstracting nonflat terms by constants as proposed first in Kapur's congruence closure algorithm (RTA97). The framework is general, flexible, and has been extended also to develop congruence closure algorithms for the cases when associative-commutative function symbols can have additional properties including idempotency, nilpotency, identities, cancellativity and group properties as well as their various combinations. Algorithms are modular; their correctness and termination proofs are simple, exploiting modularity. Unlike earlier algorithms, the proposed algorithms neither rely on complex AC compatible well-founded orderings on nonvariable terms nor need to use the associative-commutative unification and extension rules in completion for generating canonical rewrite systems for congruence closures. They are particularly suited for integrating into the Satisfiability modulo Theories (SMT) solvers. A new way to view Groebner basis algorithm for polynomial ideals with integer coefficients as a combination of the congruence closures over the AC symbol * with the identity 1 and the congruence closure over an Abelian group with + is outlined.

20. Optimal controller synthesis for timed systems

Damien Busatto-Gaston ; Benjamin Monmege ; Pierre-Alain Reynier.
Weighted timed games are zero-sum games played by two players on a timed automaton equipped with weights, where one player wants to minimise the cumulative weight while reaching a target. Used in a reactive synthesis perspective, this quantitative extension of timed games allows one to measure the quality of controllers in real-time systems. Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to non-negative weights. For non-negative weights, the largest class that can be analysed has been introduced by Bouyer, Jaziri and Markey in 2015. Though the value problem is undecidable, the authors show how to approximate the value by considering regions with a refined granularity. In this work, we extend this class to incorporate negative weights, allowing one to model energy for instance, and prove that the value can still be approximated, with the same complexity. A small restriction also allows us to obtain a class of decidable weighted timed games with negative weights and an arbitrary number of clocks. In addition, we show that a symbolic algorithm, relying on the paradigm of value iteration, can be used as an approximation/computation schema over these classes. We also consider the special case of untimed weighted games, where the same fragments are solvable in polynomial time: this contrasts with the pseudo-polynomial complexity, known so far, for weighted games without restrictions.

21. A strong call-by-need calculus

Thibaut Balabonski ; Antoine Lanco ; Guillaume Melquiond.
We present a call-by-need $\lambda$-calculus that enables strong reduction (that is, reduction inside the body of abstractions) and guarantees that arguments are only evaluated if needed and at most once. This calculus uses explicit substitutions and subsumes the existing strong-call-by-need strategy, but allows for more reduction sequences, and often shorter ones, while preserving the neededness. The calculus is shown to be normalizing in a strong sense: Whenever a $\lambda$-term t admits a normal form n in the $\lambda$-calculus, then any reduction sequence from t in the calculus eventually reaches a representative of the normal form n. We also exhibit a restriction of this calculus that has the diamond property and that only performs reduction sequences of minimal length, which makes it systematically better than the existing strategy. We have used the Abella proof assistant to formalize part of this calculus, and discuss how this experiment affected its design. In particular, it led us to derive a new description of call-by-need reduction based on inductive rules.

22. Sound approximate and asymptotic probabilistic bisimulations for PCTL

Massimo Bartoletti ; Maurizio Murgia ; Roberto Zunino.
We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity inspired by the one introduced by Desharnais, Laviolette, and Tracol, and parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof. We extend our bisimilarity notion to families of states, thus obtaining an asymptotic equivalence on such families. We then consider an asymptotic satisfaction relation for PCTL formulae, and prove that asymptotically equivalent families of states asymptotically satisfy the same formulae.