5 results
Dana Angluin ; Udi Boker ; Dana Fisman.
Families of DFAs (FDFAs) provide an alternative formalism for recognizing $\omega$-regular languages. The motivation for introducing them was a desired correlation between the automaton states and right congruence relations, in a manner similar to the Myhill-Nerode theorem for regular languages. […]
Published on February 14, 2018
Dana Angluin ; Timos Antonopoulos ; Dana Fisman.
We present the first polynomial time algorithm to learn nontrivial classes of languages of infinite trees. Specifically, our algorithm uses membership and equivalence queries to learn classes of $\omega$-tree languages derived from weak regular $\omega$-word languages in polynomial time. The method […]
Published on August 27, 2019
Dana Fisman ; Dolav Nitay ; Michal Ziv-Ukelson.
The problem of identifying a probabilistic context free grammar has two aspects: the first is determining the grammar's topology (the rules of the grammar) and the second is estimating probabilistic weights for each rule. Given the hardness results for learning context-free grammars in general, and […]
Published on February 8, 2023
Dana Fisman ; Hadar Frenkel ; Sandra Zilles.
We study the learnability of symbolic finite state automata (SFA), a model shown useful in many applications in software verification. The state-of-the-art literature on this topic follows the query learning paradigm, and so far all obtained results are positive. We provide a necessary condition for […]
Published on April 20, 2023
Dana Angluin ; Dana Fisman.
A characteristic sample for a language $L$ and a learning algorithm $\textbf{L}$ is a finite sample of words $T_L$ labeled by their membership in $L$ such that for any sample $T \supseteq T_L$ consistent with $L$, on input $T$ the learning algorithm $\textbf{L}$ returns a hypothesis equivalent to […]
Published on November 8, 2024