Search


Volume

Author

Year

  • < Previous
  • 1
  • Next >
2 results

Definability of linear equation systems over groups and rings

Anuj Dawar ; Eryk Kopczynski ; Bjarki Holm ; Erich Grädel ; Wied Pakusa.
Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability.&nbsp;[&hellip;]
Published on November 14, 2013

A Finite-Model-Theoretic View on Propositional Proof Complexity

Erich Grädel ; Martin Grohe ; Benedikt Pago ; Wied Pakusa.
We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded-width resolution, and the monomial calculus of bounded degree, can be&nbsp;[&hellip;]
Published on June 14, 2022

  • < Previous
  • 1
  • Next >