Volume 15, Issue 1

2019


1. Natural Transformations as Rewrite Rules and Monad Composition

Kozen, Dexter.
Eklund et al. (2002) present a graphical technique aimed at simplifying the verification of various category-theoretic constructions, notably the composition of monads. In this note we take a different approach involving string rewriting. We show that a given tuple $(T,\mu,\eta)$ is a monad if and only if $T$ is a terminal object in a certain category of strings and rewrite rules, and that this fact can be established by proving confluence of the rewrite system. We illustrate the technique on the monad composition problem. We also give a characterization of adjunctions in terms of rewrite categories.

2. Models of Type Theory Based on Moore Paths

Orton, Ian ; Pitts, Andrew M..
This paper introduces a new family of models of intensional Martin-L\"of type theory. We use constructive ordered algebra in toposes. Identity types in the models are given by a notion of Moore path. By considering a particular gros topos, we show that there is such a model that is non-truncated, i.e. contains non-trivial structure at all dimensions. In other words, in this model a type in a nested sequence of identity types can contain more than one element, no matter how great the degree of nesting. Although inspired by existing non-truncated models of type theory based on simplicial and cubical sets, the notion of model presented here is notable for avoiding any form of Kan filling condition in the semantics of types.
Section: Type theory and constructive mathematics

3. Probabilistic call by push value

Ehrhard, Thomas ; Tasson, Christine.
We introduce a probabilistic extension of Levy's Call-By-Push-Value. This extension consists simply in adding a " flipping coin " boolean closed atomic expression. This language can be understood as a major generalization of Scott's PCF encompassing both call-by-name and call-by-value and featuring recursive (possibly lazy) data types. We interpret the language in the previously introduced denotational model of probabilistic coherence spaces, a categorical model of full classical Linear Logic, interpreting data types as coalgebras for the resource comonad. We prove adequacy and full abstraction, generalizing earlier results to a much more realistic and powerful programming language.