Special Issue for the 13th International Conference on Database Theory, ICDT 2010

1. Answering Non-Monotonic Queries in Relational Data Exchange

Andre Hernich.
Relational data exchange is the problem of translating relational data from a source schema into a target schema, according to a specification of the relationship between the source data and the target data. One of the basic issues is how to answer queries that are posed against target data. While consensus has been reached on the definitive semantics for monotonic queries, this issue turned out to be considerably more difficult for non-monotonic queries. Several semantics for non-monotonic queries have been proposed in the past few years. This article proposes a new semantics for non-monotonic queries, called the GCWA*-semantics. It is inspired by semantics from the area of deductive databases. We show that the GCWA*-semantics coincides with the standard open world semantics on monotonic queries, and we further explore the (data) complexity of evaluating non-monotonic queries under the GCWA*-semantics. In particular, we introduce a class of schema mappings for which universal queries can be evaluated under the GCWA*-semantics in polynomial time (data complexity) on the core of the universal solutions.

2. Composition with Target Constraints

Marcelo Arenas ; Ronald Fagin ; Alan Nash.
It is known that the composition of schema mappings, each specified by source-to-target tgds (st-tgds), can be specified by a second-order tgd (SO tgd). We consider the question of what happens when target constraints are allowed. Specifically, we consider the question of specifying the composition of standard schema mappings (those specified by st-tgds, target egds, and a weakly acyclic set of target tgds). We show that SO tgds, even with the assistance of arbitrary source constraints and target constraints, cannot specify in general the composition of two standard schema mappings. Therefore, we introduce source-to-target second-order dependencies (st-SO dependencies), which are similar to SO tgds, but allow equations in the conclusion. We show that st-SO dependencies (along with target egds and target tgds) are sufficient to express the composition of every finite sequence of standard schema mappings, and further, every st-SO dependency specifies such a composition. In addition to this expressive power, we show that st-SO dependencies enjoy other desirable properties. In particular, they have a polynomial-time chase that generates a universal solution. This universal solution can be used to find the certain answers to unions of conjunctive queries in polynomial time. It is easy to show that the composition of an arbitrary number of standard schema mappings is equivalent to the composition of only two standard schema mappings. We show that surprisingly, the analogous result […]

3. The Complexity of Rooted Phylogeny Problems

Manuel Bodirsky ; Jens K Mueller.
Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted phylogeny problem that does not fall into our tractable class is NP-complete, using known results about the complexity of Boolean constraint satisfaction problems. Finally, we present a pebble game argument that shows that the rooted triple consistency problem (and also all generalizations studied in this paper) cannot be solved by Datalog.

4. Alternating register automata on finite words and trees

Diego Figueira.
We study alternating register automata on data words and data trees in relation to logics. A data word (resp. data tree) is a word (resp. tree) whose every position carries a label from a finite alphabet and a data value from an infinite domain. We investigate one-way automata with alternating control over data words or trees, with one register for storing data and comparing them for equality. This is a continuation of the study started by Demri, Lazic and Jurdzinski. From the standpoint of register automata models, this work aims at two objectives: (1) simplifying the existent decidability proofs for the emptiness problem for alternating register automata; and (2) exhibiting decidable extensions for these models. From the logical perspective, we show that (a) in the case of data words, satisfiability of LTL with one register and quantification over data values is decidable; and (b) the satisfiability problem for the so-called forward fragment of XPath on XML documents is decidable, even in the presence of DTDs and even of key constraints. The decidability is obtained through a reduction to the automata model introduced. This fragment contains the child, descendant, next-sibling and following-sibling axes, as well as data equality and inequality tests.