12 results
Mikołaj Bojańczyk ; Michał Pilipczuk.
The classic algorithm of Bodlaender and Kloks [J. Algorithms, 1996] solves the following problem in linear fixed-parameter time: given a tree decomposition of a graph of (possibly suboptimal) width k, compute an optimum-width tree decomposition of the graph. In this work, we prove that this problem […]
Published on February 3, 2022
Mikołaj Bojańczyk ; Martin Grohe ; Michał Pilipczuk.
We prove that for every positive integer k, there exists an MSO_1-transduction that given a graph of linear cliquewidth at most k outputs, nondeterministically, some cliquewidth decomposition of the graph of width bounded by a function of k. A direct corollary of this result is the equivalence of […]
Published on January 25, 2021
Mikołaj Bojańczyk ; Thomas Colcombet.
We define a new class of languages of $\omega$-words, strictly extending $\omega$-regular languages. One way to present this new class is by a type of regular expressions. The new expressions are an extension of $\omega$-regular expressions where two new variants of the Kleene star $L^*$ are […]
Published on October 26, 2017
Mikołaj Bojańczyk ; Filippo Cavallari ; Thomas Place ; Michał Skrzypczak.
In this article we provide effective characterisations of regular languages of infinite trees that belong to the low levels of the Wadge hierarchy. More precisely we prove decidability for each of the finite levels of the hierarchy; for the class of the Boolean combinations of open sets […]
Published on September 4, 2019
Mikołaj Bojańczyk ; Bartek Klin.
$\omega$-clones are multi-sorted structures that naturally emerge as algebras for infinite trees, just as $\omega$-semigroups are convenient algebras for infinite words. In the algebraic theory of languages, one hopes that a language is regular if and only if it is recognized by an algebra that is […]
Published on November 29, 2019
Mikołaj Bojańczyk ; Laure Daviaud ; Bruno Guillon ; Vincent Penelle ; A. V. Sreejith.
We prove the undecidability of MSO on $\omega$-words extended with the second-order predicate $U_1(X)$ which says that the distance between consecutive positions in a set $X \subseteq \mathbb{N}$ is unbounded. This is achieved by showing that adding $U_1$ to MSO gives a logic with the same […]
Published on February 11, 2020
Mikołaj Bojańczyk ; Sławomir Lasota.
We define a new kind of automata recognizing properties of data words or data trees and prove that the automata capture all queries definable in Regular XPath. We show that the automata-theoretic approach may be applied to answer decidability and expressibility questions for XPath.
Published on February 16, 2012
Mikolaj Bojanczyk ; Luc Segoufin.
We study tree languages that can be defined in \Delta_2 . These are tree languages definable by a first-order formula whose quantifier prefix is forall exists, and simultaneously by a first-order formula whose quantifier prefix is . For the quantifier free part we consider two signatures, either the […]
Published on October 20, 2010
Mikolaj Bojanczyk.
We consider a temporal logic EF+F^-1 for unranked, unordered finite trees. The logic has two operators: EF\phi, which says "in some proper descendant \phi holds", and F^-1\phi, which says "in some proper ancestor \phi holds". We present an algorithm for deciding if a regular language of unranked […]
Published on August 5, 2009
Mikołaj Bojańczyk ; Bartek Klin ; Sławomir Lasota.
We study languages over infinite alphabets equipped with some structure that can be tested by recognizing automata. We develop a framework for studying such alphabets and the ensuing automata theory, where the key role is played by an automorphism group of the alphabet. In the process, we generalize […]
Published on August 15, 2014