8 results
Patricia Bouyer ; Kim G. Larsen ; Nicolas Markey.
We consider the model of priced (a.k.a. weighted) timed automata, an extension of timed automata with cost information on both locations and transitions, and we study various model-checking problems for that model based on extensions of classical temporal logics with cost constraints on modalities. […]
Published on June 20, 2008
Nathalie Bertrand ; Patricia Bouyer ; Thomas Brihaye ; Quentin Menet ; Christel Baier ; Marcus Groesser ; Marcin Jurdzinski.
A stochastic timed automaton is a purely stochastic process defined on a timed automaton, in which both delays and discrete choices are made randomly. We study the almost-sure model-checking problem for this model, that is, given a stochastic timed automaton A and a property $\Phi$, we want to […]
Published on December 9, 2014
Patricia Bouyer ; Thomas Brihaye ; Fabrice Chevalier.
In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the […]
Published on January 12, 2010
Patricia Bouyer ; Romain Brenguier ; Nicolas Markey ; Michael Ummels.
We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player turn-based game which turns Nash equilibria into […]
Published on June 19, 2015
Nathalie Bertrand ; Patricia Bouyer ; Anirban Majumdar.
Broadcast networks allow one to model networks of identical nodes communicating through message broadcasts. Their parameterized verification aims at proving a property holds for any number of nodes, under any communication topology, and on all possible executions. We focus on the coverability […]
Published on March 18, 2021
Patricia Bouyer ; Stéphane Le Roux ; Youssouf Oualhadj ; Mickael Randour ; Pierre Vandenhove.
For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in […]
Published on January 17, 2022
Patricia Bouyer ; Youssouf Oualhadj ; Mickael Randour ; Pierre Vandenhove.
We study stochastic zero-sum games on graphs, which are prevalent tools to model decision-making in presence of an antagonistic opponent in a random environment. In this setting, an important question is the one of strategy complexity: what kinds of strategies are sufficient or required to play […]
Published on December 1, 2023
Patricia Bouyer ; Antonio Casares ; Mickael Randour ; Pierre Vandenhove.
In two-player games on graphs, the simplest possible strategies are those that can be implemented without any memory. These are called positional strategies. In this paper, we characterize objectives recognizable by deterministic B\"uchi automata (a subclass of omega-regular objectives) that are […]
Published on August 29, 2024